
تعداد نشریات | 26 |
تعداد شمارهها | 395 |
تعداد مقالات | 3,480 |
تعداد مشاهده مقاله | 5,369,645 |
تعداد دریافت فایل اصل مقاله | 3,669,971 |
On a family of Einstein like Walker metrics | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 خرداد 1404 اصل مقاله (287.78 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.16924.1150 | ||
نویسندگان | ||
Mamadou Ciss1؛ Issa Allassane Kaboye2؛ Abdoul Salam Diallo* 3 | ||
1Universite Alioune Diop, UFR SATIC, Departement de Mathematiques, Equipe de Recherche en Analyse Non Lineaire et Geometrie, B. P. 30, Bambey, Senegal | ||
2Universite Andre Salifou de Zinder, Departement des Sciences Exactes, B. P. 656, Zinder, Niger | ||
3Universite Alioune Diop, UFR SATIC, Departement de Mathematiques, Equipe de Recherche en Analyse Non Lineaire et Geometrie, B. P. 30, Bambey, Senegal and Universite Abdou Moumouni, Faculte des Sciences et Techniques, Departement de Mathematiques et Informatique, B.P. 10 662, Niamey, Niger | ||
چکیده | ||
A four dimensional pseudo-Riemannian manifold of signature (2, 2) is called a Walker manifold if it admits a parallel degenerate plane field. Einstein like metrics are generalizations of Einstein metrics. In this paper, we study the curvature properties of a family of four dimensional Walker manifolds. We give conditions on the coefficients of the metric so that the Ricci tensor of the metric is parallel, cyclic parallel and Codazzi respectively. | ||
کلیدواژهها | ||
Einstein manifold؛ Einstein like manifold؛ Walker metrics | ||
مراجع | ||
1. W. Batat, G. Calvaruso and B. De Leo, On the geometry of four-dimensional Walker manifolds, Rend. Mat. Appl., VII. Ser. 29(2) (2009), 163-173 . 2. C. Boubel and L. B. Bergery, On pseudo-Riemannian manifolds whose Ricci tensor is parallel, Geom. Dedicata. 86(1-3) (2001), 1-18 . 3. M. Brozos-V´azquez, E. Garc´ıa-Rio, P. Gilkey, S. Nikevi´c and R. V´azquez-Lorenzo. The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics, (5),2009. 4. G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata. 127 (2007), 99-119. 5. M. Chaichi, E. Garc´ıa-R´ıo and Y. Matsushita, Curvature properties of four-dimensional Walker metrics, Classical Quantum Gravity. 22 (2005), 559-577. 6. M. Ciss, I. A. Kaboye and A. S. Diallo, Killing vector fields on a family of fourdimensional Walker manifolds, J. Tensor Soc. (N.S.) 18 (2024), 37-43. 7. A. S. Diallo and M. Hassirou, Examples of Osserman metrics of (3; 3)-signature, J. Math. Sci. Adv. Appl. 7(2) (2011), 95-103. 8. A. S. Diallo, M. Hassirou and O. T. Issa, Walker Osserman metric of signature (3; 3),Bull. Math. Anal. Appl. 9(4) (2017), 21-30. 9. A. S. Diallo, A. Ndiaye and A. Niang, On pseudo-Riemannian A-manifolds, J. Adv.Math. Stud. 16(4) (2023), 422-428. 10. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata. 7(3) (1978),259-280. 11. B. Mbodj, A. S. Diallo and I. A. Kaboye, Locally conformally symmetric condition on four dimensional strict Walker metrics, Int. J. Geom. 13(3) (2024), 109-117. 12. A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes,Quart. J. Mat Oxford. 1(2) (1950), 69-79. | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 2 |