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ABSTRACT

A secure dominating set S ⊆ V is a dominating set of
G satisfying the condition that for each u ∈ V \S, there
exists a vertex v ∈ N(u)∩S such that (S \{v})

⋃
{u} is

a dominating set of G. The minimum cardinality of a
secure dominating set of G is called the secure domina-
tion number of G, γs(G). In this paper, we obtain the
secure domination number of generalized thorn paths,
thorn graphs, and some special graph classes like thorn
rod, thorn star and Kragujevac trees, where the general-
ized thorn paths are important in the study of chemical
compounds.
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1. Introduction

The graphs discussed in this paper are finite, undirected, and simple. We recommend

[?] for graph theory definitions, terminologies, and notations that are not discussed in this

paper. In this context, G refers to G = (V,E), where V = V (G) is the vertex set and

E = E(G) is the edge set.

A vertex u is a neighbour of a vertex v in a graph G if uv is an edge of G. The set

of all neighbours of v is the open neighbourhood of v and is denoted by N(v). The set

N [v] = N(v) ∪ {v} is the closed neighbourhood of v in G. The number of edges incident

∗Address correspondence to Gisha Saraswathy; Department of Mathematics, St. Paul’s College, Kalamassery, 683503,

Kerala, India. E-mail: gisha1988saraswathy@gmail.com.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili.

1

https://jhs.uma.ac.ir/article_2509.html
https://jhs.uma.ac.ir
https://doi.org/10.22098/jhs.2025.15658.1036
HTTPS://ORCID.ORG/0000-0002-7048-0295
HTTPS://ORCID.ORG/0000-0002-5692-825X
 https://creativecommons.org/licenses/by-nc/4.0/


2 G. Saraswathy and M. K. Menon

with v ∈ V is called the degree of v in G and is denoted by d(v). A pendant vertex of G is

the vertex of degree one. Let S ⊆ V and v ∈ S, a vertex u ∈ V is an S-private neighbour

of v if N(u) ∩ S = {v}. The set of all S-private neighbours of v is denoted by PN(v, S). If

u ∈ V \ S, then u is called an S-external private neighbour of v. The set of all S-external

private neighbours of v is denoted by EPN(v, S) [?].

A subset S of V is a dominating set of G if every vertex u ∈ V \S has at least one neighbour

in S. The minimum cardinality of a dominating set is called the domination number of G,

denoted as γ(G). A dominating set of G of cardinality γ(G) is called a γ-set [?].

A subset S ⊆ V is a secure dominating set of G if it satisfies the condition that for each

u ∈ V \S, there exists a vertex v ∈ N(u)∩S such that (S \ {v})
⋃
{u} is a dominating set of

G. The minimum cardinality of a secure dominating set of G is called the secure domination

number of G, denoted as γs(G). A secure dominating set of G with cardinality γs(G) is

called a γs-set [?].

A secure dominating set of G is a collection of locations where guards can be stationed to

ensure that the location complex modelled by G is protected in such a way that if a security

issue arises at location u, either a guard can be stationed there to fix the issue, or a guard

can fix the issue from an adjacent location, location v, and still leave the location complex

dominated after relocating from location v to location u. The secure domination number,

in this case, indicates the absolute minimum number of guards required to secure the entire

site complex, thereby lowering the overall cost of guard deployment. The aforementioned

general application is often realized in the context of military strategy analysis, surveillance

applications, or the deployment of security guards by commercial security organizations [?].

E. J. Cockayne, and et.al introduced the concept of secure domination in [?], and further

explored in [?] and [?]. A constructive characterization of γ-excellent trees was used by C.

M. Mynhardt, and et.al in [?] to obtain a constructive characterization of trees with equal

secure domination and domination numbers. In [?], Cockayne obtained a bound for a secure

domination number of trees in terms of maximum degree. In [?], P. J. P. Grobler and C.

M. Mynhardt studied how the edge removal affected γs(G) and characterise a few classes of

γs - ER critical graphs. In [?], D. Yun-Ping, W. Haichao, and Z. Yancai showed that the

decision version of the secure domination problem is NP -complete for star convex bipartite

graphs and doubly chordal graphs.

Definition 1.1. Let G be a simple connected graph of order n with vertex set V (G) =

{v1, v2, . . . , vn} and let P = (p1, p2, . . . , pn) be the n-tuple of non-negative integers. The

thorn graph GP is the graph obtained by attaching pi pendant vertices to the vertex vi of G

for i = 1, 2, . . . , n. The pendant vertices attached to the vertices vi of G are called thorns of

vi [?].

Definition 1.2. The graph formed by attaching t copies of a path Pr to each vertex of a

path Pn is referred to as a generalized thorn path and is denoted by G(n, r, t), n > 1, r ≥ 1,

t ≥ 1 [?].

Definition 1.3. A thorn rod, denoted as Pn,t, is formed by considering a path Pn on n ≥ 2

vertices and attaching (t − 1) pendant vertices to each of the end vertices of Pn [?]. See

Figure ??.
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Definition 1.4. Let Sn = K1,n−1 denotes the star graph. Denote the vertices as 1, 2, . . . , n−
1, n, where n is the central vertex and the rest of the vertices are the terminal vertices. Then

the thorn star Sn(p1, p2, . . . , pn−1) is obtained by attaching pi pendant vertices to the vertex

i of Sn for i = 1, 2, . . . , n− 1 [?]. See Figure ??.

Definition 1.5. The Kragujevac tree say T in [?] is a tree with a vertex of degree n > 1

(which is the central vertex of T ), which is adjacent to the roots of Bp1 , Bp2 , . . . , Bpn where,

p1, p2, . . . , pn ≥ 1. Here, n is the degree of T . The subgraphs Bp1 , Bp2 , . . . , Bpn are the

branches of T . Kragujevac tree of degree n is usually denoted by Kg(p1, p2, . . . , pn) or in

short Kg. Figure ?? shows Kragujevac tree Kg(3, 2, 1, 3).

Gutman [?] introduced the idea of thorn graphs, which went on to uncover various chemical

applications. The study of thorn graphs was motivated by the particular case below, namely

Gp = Gγ−γ1,γ−γ2,...γ−γn where, γ is a constant and γi is the degree of the ith vertex of G

(γi ≤ γ for all i = 1, 2, . . . , n). Then the degree of the vertices of Gp are either γ or one.

If γ = 4, then, according to Cayley in [?], the thorn graph GP is the plerogram (a graph in

which every atom is represented by a vertex and adjacent atoms are connected by a chemical

bond) and the parent graph G is the kenogram (a graph obtained from a plerogram by

suppressing hydrogen atoms), and according to Polya in [?], GP is the C −H graph and G

is the C-graph [?]. Later, research has focused on several kinds of thorn graphs, including

thorn trees, thorn rings, thorn rods, and thorn stars. In the theory of polymers, particularly

for dendrimers [?], thorn graphs were used.

Recently, there’s been a lot of interest in finding secure domination in different graph

classes as shown in studies like [?], [?], [?], and [?]. In [?], R. Burdett, M. Haythorpe,

and A. Newcombe examined the secure domination number of flower snarks, which are a

family of 3-regular graphs. In [?], P. G. Nayana and I. R. Rajamani, investigates the secure

domination number of generalized Mycielskians for path graphs Pn and cycle graphs Cn. In

[?], M. Haythorpe and A. Newcombe investigates the secure domination numbers of Cartesian

products of small graphs with paths and cycles. In [?], R. Arasu and N. Parvathi explores

the secure domination parameters of Halin graphs when combined with perfect k-ary trees.

This has inspired us to find the same in a well-known network called thorn graphs and its

more general forms. In [?], we studied the secure domination number of Sierpiński graphs.

In this paper, we obtain the secure domination number of generalized thorn paths, thorn

graphs GP with P = (p1, p2, . . . , pn) with pi ̸= 0, for all i, and some special graph classes like

thorn rod, thorn star in which pi = 0, for some i, and Kragujevac trees, where generalized

thorn paths, G(n, r, t), play a significant role in the study of chemical compounds.

2. Preliminary Results

Proposition 2.1. [?] Let S be a dominating set of G. Vertex v ∈ S defends u ∈ V \ S if

and only if G[EPN(v, S) ∪ {u, v}] is complete.

Corollary 2.2. [?] S is a secure dominating set if and only if for each u ∈ V \ S, there

exists v ∈ S such that G[EPN(v, S) ∪ {u, v}] is complete.

Theorem 2.3. [?] For n ∈ N,
(1) γs(Pn) =

⌈
3n
7

⌉
.

(2) γs(K1,n) = n.
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Remark 2.4. The γs-set of P7m for m ∈ N, is unique [?], and the set is S = {7k + 2, 7k +

4, 7k + 6|k = 0, 1, . . .m− 1}.

Remark 2.5. For m ∈ N,
(i) γs(P7m) = 3m.

(ii) γs(P7m−2) = γs(P7m−1) = γs(P7m).

(iii) γs(P7m−3) = γs(P7m) - 1.

Remark 2.6. In P7m for m ∈ N, every v ∈ V \ S is uniquely S-defended by a vertex in S, or

in other words, every u ∈ S has to S-defend at least one vertex v ∈ V \ S, where S denotes

the γs-set of P7m.

Remark 2.7. In Pn, there exists no γs-set containing at least one pendant vertex if and only

if n = 7m.

3. Secure Domination Number of Generalized Thorn Path

Throughout this section, let 1, 2, . . . , n denote the vertices of Pn, and let i1Pr, i2Pr, . . .,

itPr (r ≥ 1) denote the t copies of Pr adjacent to the vertex i ∈ V (Pn), for i ∈ {1, 2, . . . , n}
with vertex set {i11, i12, . . . , i1r, i21, i22, . . . , i2r, . . . , it1, it2, . . . , itr}.

Figure 1. G(5, 3, 2)

Theorem 3.1. For any n, r, t ∈ N, γs(G(n, r, t)) ≤ ntγs(Pr) + γs(Pn). Moreover, the bound

is attained if and only if r = 7m, m ∈ N.

Proof. Let S1 and S2 denote the γs-set of Pr and Pn, respectively. Define, S = {iju|i ∈
{1, 2, . . . , n}, j ∈ {1, 2, . . . , t}, u ∈ S1} ∪ {v|v ∈ S2}, where |S| = ntγs(Pr) + γs(Pn). If

x ∈ V (Pr) is adjacent to u ∈ S1, then the vertex of the form ijx ∈ V (G(n, r, t)) is adjacent

to the vertex iju ∈ S, for any i, j. Similarly, if y ∈ V (Pn) is adjacent to v ∈ S2, then

the same y ∈ V (G(n, r, t)) is adjacent to the same v ∈ S. Hence, S is a dominating set of

G(n, r, t).

Since, for any x ∈ V (Pr)\S1, there exists u ∈ S1 such that (S1\{u})∪{x} is a dominating

set of Pr, we have for any ijx ∈ V (G(n, r, t)) \S, there exists iju ∈ S such that (S \ {iju})∪
{ijx} is a dominating set of G(n, r, t). Therefore, S is a secure dominating set of G(n, r, t).

Hence, γs(G(n, r, t)) ≤ ntγs(Pr) + γs(Pn).
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Assume that r = 7m, for m ∈ N. The corresponding graph is G(n, 7m, t). For each

i ∈ V (Pn), define Si =
⋃t

j=1{ij7k + 2, ij7k + 4, ij7k + 6|k = 0, 1, . . . ,m − 1}, where t ≥ 1,

m ∈ N. Let S =
⋃n

i=1 Si. Here, |S| = nt(3m) = ntγs(P7m). Since none of the vertices of Pn

is adjacent to the vertices in S, we have to choose γs(Pn) number of vertices from Pn itself

to form a secure dominating set of G(n, 7m, t). Hence, γs(G(n, r, t)) ≤ ntγs(Pr) + γs(Pn).

Since γs-set of P7m is unique ??, a minimum of ntγs(Pr) + γs(Pn) number of vertices are

needed to securely dominate G(n, 7m, t). Thus, γs(G(n, r, t)) = ntγs(Pr) + γs(Pn).

Assume that γs(G(n, r, t)) = ntγs(Pr)+γs(Pn). Here, Pn is securely dominated by γs(Pn)

number of vertices from Pn itself. This implies that no vertices of Pr are present to dominate

the vertices of Pn. i.e., no pendant vertex of Pr is in the γs-set of Pr. This scenario is possible

only if r = 7m, m ∈ N, refer Remark ??. □

In the upcoming theorems, we aim to determine the exact values for γs(G(n, r, t) based

on the values of r in the paths Pr. Since the γs-set of P7m for m ∈ N is unique, we consider

the values of r as r = 7m + k, for k = 0, 1, 2, 3, 4, 5, 6. According to Theorem ??, we have

γs(G(n, r, t)) = ntγs(Pr) + γs(Pn) if and only if r = 7m, where m ∈ N ∪ {0}. The theorems

below provides the γs(G(n, r, t)) for the remaining values of r.

Theorem 3.2. For any n, r ∈ N, t > 1, γs(G(n, r, t)) = ntγs(Pr) + γ(Pn) if and only if

r = 7m+ 2, m ∈ N ∪ {0}.

Proof. Assume that r = 7m+2, where m ∈ N∪ {0}. The corresponding graph is G(n, 7m+

2, t). Define Si =
⋃t

j=1{ij7k+2, ij7k+4, ij7k+6, ij7m+2|k = 0, 1, . . . ,m−1}. Then, define
S =

⋃n
i−1 Si. Here, |S| = ntγs(Pr), for r = 7m+2. Although the vertex ij7m+2 S-defends

the vertex ij7m+ 1, it can also dominate another adjacent vertex, likely the vertex i of Pn.

Since t > 1, for each vertex i ∈ V (Pn), there exist t vertices i17m+2, i27m+2, . . . , it7m+2

which can dominate i. Therefore, only γ(Pn) vertices are needed to securely dominate the

vertices of Pn. Thus, we have γs(G(n, r, t)) ≤ ntγs(Pr) + γ(Pn).

Suppose S′ is the γs-set of G(n, 7m+2, t). Since each Pr is disjoint, we have |S′| ≥ ntγs(Pr)

for r = 7m + 2. In order to form a secure dominating set of G(n, 7m+ 2, t), a minimum of

γ(Pn) vertices are required from Pn. Thus, |S′| ≥ ntγs(Pr) + γ(Pn). Hence, γs(G(n, r, t)) =

ntγs(Pr) + γ(Pn).

Assume that γs(G(n, r, t)) = ntγs(Pr) + γ(Pn). Here, γs(Pr) vertices are taken from

each copy of Pr and γ(Pn) vertices from Pn. For Pn, γ(Pn) vertices are enough to securely

dominates the vertices of Pn. This happens only when each vertex i ∈ V (Pn) is dominated

by at least on vertex of Pr. Additionally, these vertices do not S-defend the vertex i, as

γ(Pn) vertices are added to form a secure dominating set of G(n, r, t). This is possible only

if r = 7m+ 2. □

Theorem 3.3. For any n ∈ N, t > 1, γs(G(n, r, t)) = ntγs(Pr) − n(t − 1) if and only if

r = 7m+ k, for k = 3, 5, m ∈ N ∪ {0}.

Proof. Assume that r = 7m+ k, for k = 3, 5, m ∈ N ∪ {0}.
Case 1: r = 7m+ 3.

The corresponding graph is G(n, 7m+ 3, t). Define

Si =
⋃t

j=1{ij7k + 2, ij7k + 4, ij7k + 6, ij7m+ 2, ij7m+ 3|k = 0, 1, . . . ,m− 1}. Let
S′ =

⋃n
i=1 Si. Here, |S′| = ntγs(Pr), for r = 7m+ 3. Define
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S′′ =
⋃t

j=1{ij7m+3|i = 1, 2, . . . , n}. Consider S = (S′ \S′′)∪V (Pn). We are going to show

that S forms a γs-set of G(n, 7m + 3, t). It is enough to show that the vertices of S′′ are

securely dominated by the vertices of S.

Clearly, S is a dominating set of G(n, 7m + 3, t). Consider a vertex, say ij7m + 3, for

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , t} where t > 1. Here, ij7m + 3 ∈ S′′ is S-defended by

the vertex i ∈ V (Pn) for all j. Also, ij7m + 2 dominates ij7m + 3. Hence, S is a secure

dominating set of G(n, 7m+ 3, t). Since t > 1, S is the γs-set of G(n, 7m+ 3, t). Hence,

γs(G(n, r, t)) = nt(γs(Pr)− 1) + n

= ntγs(Pr)− n(t− 1).

Case 2: r = 7m+ 5.

The corresponding graph is G(n, 7m+ 5, t). Define

Si =
⋃t

j=1{ij7k+2, ij7k+4, ij7k+6, ij7m+2, ij7m+4, ij7m+5|k = 0, 1, . . . ,m− 1}. Let
S′ =

⋃n
i=1 Si. Here, |S′| = ntγs(Pr), for r = 7m+ 5. Define

S′′ =
⋃t

j=1{ij7m+5|i = 1, 2, . . . , n}. Consider S = (S′ \S′′)∪V (Pn). We are going to show

that S forms a γs-set of G(n, 7m + 5, t). It is enough to show that the vertices of S′′ are

securely dominated by the vertices of S.

Clearly, S is a dominating set of G(n, 7m + 5, t). Consider a vertex ij7m + 5 ∈ S′′ for

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , t}, where t > 1. Here, ij7m+5 is S-defended by the vertex

i ∈ V (Pn) for all j. Also, ij7m+4 dominates ij7m+5. Hence, S is a secure dominating set

of G(n, 7m+ 5, t). Since t > 1, S is the γs-set of G(n, 7m+ 5, t). Hence,

γs(G(n, r, t)) = nt(γs(Pr)− 1) + n

= ntγs(Pr)− n(t− 1).

Assume that γs(G(n, r, t)) = ntγs(Pr) − n(t − 1) = nt(γs(Pr) − 1) + n. From Theorem ??

and Theorem ??, we get n ̸= 7m + k for k = 0, 2. We can easily conclude that the result

holds true only if k = 3, 5. □

Theorem 3.4. For any n ∈ N, t > 1, γs(G(n, r, t)) = ntγs(Pr) if and only if r = 7m + k,

for k = 1, 4, 6, m ∈ N ∪ {0}.

Proof. Assume that r = 7m+ k, for k = 1, 4, 6, m ∈ N ∪ {0}.
Case 1: r = 7m+ 1

The corresponding graph is G(n, 7m + 1, t). Define Si =
⋃t

j=1{ij7k + 2, ij7k + 4, ij7k +

6, ij7m+ 1|k = 0, 1, . . . ,m− 1}. Let S=
⋃n

i=1 Si. Here, |S| = ntγs(Pr), for r = 7m+ 1. We

are going to show that S forms a γs-set of G(n, r, t) for r = 7m+ 1.

From the selection of vertices in S, it is clear that S securely dominates all the vertices

of ijP7m+1 for all i and j. It is enough to show that S securely dominates the vertices of

Pn. Consider a vertex i ∈ V (Pn). Any vertex of the form ij7m + 1 where j ∈ {1, 2, . . . , t}
securely dominates i. Hence, S is a secure dominating set of G(n, r, t) for r = 7m+ 1.

Let S′ denote the γs-set of G(n, r, t). We have to show that |S| ≤ |S′|. Since there are no

edges connecting the paths ijP7m+1, |S′| ≥ ntγs(P7m+1), m ∈ N ∪ {0}. Hence, |S| ≤ |S’|.
Thus S forms the γs-set of G(n, 7m+ 1, t).

Case 2: r = 7m+ 4

The corresponding graph is G(n, 7m + 4, t). Define Si =
⋃t

j=1{ij7k + 2, ij7k + 4, ij7k +
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6, ij7m + 2, ij7m + 4|k = 0, 1, . . . ,m − 1}. Let S’=
⋃n

i=1 Si. Here, |S’| = ntγs(Pr), for

r = 7m+ 4. We are going to show that S forms a γs-set of G(n, r, t) for r = 7m+ 4.

From the selection of vertices in S, it is clear that S securely dominates all the vertices

of ijP7m+4 for all i and j. It is enough to show that S securely dominates the vertices of

Pn. Consider a vertex i ∈ V (Pn). Any vertex of the form ij7m + 4 where j ∈ {1, 2, . . . , t}
securely dominates i. Hence, S is a secure dominating set of G(n, 7m+ 4, t).

Let S′ denotes the γs-set of G(n, 7m + 4, t). We have to show that |S| ≤ |S′|. Since

there are no edges connecting the paths ijP7m+4, |S′| ≥ ntγs(P7m+4), m ∈ N ∪ {0}. Hence,

|S| ≤ |S’|. Thus, S forms the γs-set of G(n, 7m+ 4, t).

Case 3: r = 7m+ 6

The corresponding graph is G(n, 7m + 6, t). Define Si =
⋃t

j=1{ij7k + 2, ij7k + 4, ij7k +

6, ij7m+ 2, ij7m+ 4, ij7m+ 6|k = 0, 1, . . . ,m− 1}. Let S′=
⋃n

i=1 Si. Here, |S′| = ntγs(Pr),

for r = 7m+ 6. We are going to show that S forms a γs-set of G(n, r, t) for r = 7m+ 6.

From the selection of vertices in S, it is clear that S securely dominates all the vertices

of ijP7m+6 for all i and j. It is enough to show that S securely dominates the vertices of

Pn. Consider a vertex i ∈ V (Pn). Any vertex of the form ij7m + 6 where j ∈ {1, 2, . . . , t}
securely dominates i. Hence, S is a secure dominating set of G(n, 7m+ 6, t).

Let S′ denote the γs-set of G(n, 7m+ 6, t). We have to show that |S| ≤ |S′|. Since there

does not contain any edge connecting the paths ijP7m+6, |S′| ≥ ntγs(P7m+6), m ∈ N ∪ {0}.
Hence, |S| ≤ |S′|. Thus, S forms the γs-set of G(n, 7m+ 6, t).

Assume that γs(G(n, r, t)) = ntγs(Pr). We can easily conclude that the result is true only

if k = 1, 4, 6. □

4. Secure domination number of thorn graphs

In this section, we are considering thorn graphs GP with P = (p1, p2, . . . , pn), such that

pi ̸= 0, for all i.

Theorem 4.1. Let GP be the thorn graph of G with P = (p1, p2, . . . , pn) as the n-tuple of

positive integers. Then γs(GP ) =
∑n

i=1 pi.

Proof. To simplify the notation, let the vertices ofG be 1, 2, . . . , n and let the pendant vertices

adjacent to each i ∈ G be i1, i2, . . . , ipi, for i = 1, 2, . . . , n. Define S = {i1, i2, . . . , ipi|i =
1, 2, . . . , n}, where |S| =

∑n
i=1 pi. In other words, S is the set of all pendant vertices adjacent

to G. We need to show that S forms a secure dominating set of G. Since each vertex of

V (GP ) \ S is adjacent to at least one vertex of S, S form a dominating set of GP .

Consider any v ∈ V (GP ) \ S. Then, v = i for some i ∈ {1, 2, . . . , n}. We know that

i is adjacent to pi pendant vertices i1, i2, . . . , ipi for i = 1, 2, . . . , n, and each of these pi

vertices belongs to S. Hence, the vertices ij, for j = 1, 2, . . . , pi, S-defend the vertex i, for

i = {1, 2, . . . , n}. Therefore, S is a secure dominating set of GP . Since each vertex in S is

non-adjacent, S is minimal.

(4.1) γs(GP ) ≤
n∑

i=1

pi.

Now, we need to show that S is a γs-set of GP . Assume that there exists a secure

dominating set S′ with |S′| ≤ |S|. Then, S′ does not include all the pendant vertices in S.
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Since S is minimal, S′ contain at least one vertex from G, say j, for j = 1, 2, . . . , n.

Case 1: At least two pendant vertices are not in S′.

Suppose these two pendant vertices are of the form jr and jm for 1 ≤ r,m ≤ pj . As jr

and jm are two non-adjacent external private neighbours of j, the vertex j cannot S-defend

both jr and jm. Since S′ is a γs-set of GP , either jr ∈ S′ or jm ∈ S′. Therefore, this case

is not possible.

If these two pendant vertices are of the form ir and jm for 1 ≤ r ≤ pi, 1 ≤ m ≤ pj , with

i ̸= j, then, both i and j belong to S′. Since ir and jm are external private neighbour of

i and j respectively, both i and j are unable to S-defend any other vertices in GP . Hence,

|S′| = |S|.
Case 2: Exactly one of the pj pendant vertices adjacent to j is not in S′.

Let jr be the pendant vertex adjacent to j, for 1 ≤ r ≤ pj . Since jr ̸∈ S′, the vertex

j ∈ S′. Given that jr is the external private neighbour of j, the vertex j can only S-defend

jr. Therefore, from each set {j, j1, j2, . . . , jpj}, S′ contains at least j number of vertices, for

j = 1, 2, . . . , n. Thus, |S′| ≥ |S|.
Case 3: For some j, if the set {j, j1, j2, . . . , jpj} ⊆ S′.

Then, j can S-defend at least one adjacent vertex say i in G. Thus, {i1, i2, . . . , ipi} ⊆ S′.

i. e., all pendant vertices adjacent to i and j belong to S′. If j S-defends all the vertices of

G (when G = Kn), then ∪n
i=1{i1, i2, . . . , ipi} ∪ {j} ⊆ S′, which implies |S′| > |S|.

Since S′ is a γs-set of GP , |S′| = |S|. Hence, S is a γs-set of GP .

□

5. Secure domination number of some special graphs

In this section, we have obtained the secure domination number of some thorn graphs

with pi = 0, for some i. Here, we are considering some special graphs like thorn rod, thorn

star, and Kragujevac trees.

Figure 2. P6,5

Theorem 5.1. For n ∈ N, t ≥ 1,

γs(Pn,t) =


⌈
3n
7

⌉
+ 2t− 4, if n = 7m+ 5⌈

3n
7

⌉
+ 2t− 3, Otherwise

for m ∈ N ∪ {0}.

Proof. Let Pn be a path with n vertices, labelled as 1, 2, . . . n. The thorn rod Pn,t is the

graph obtained by attaching (t − 1) pendant vertices to vertices 1 and n, respectively. Let

the (t−1) pendant vertices adjacent to 1 are labelled as 11, 12, . . . 1(t−1), and those adjacent
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to the vertex n are labelled as n1, n2, . . . n(t− 1). Let S denote the γs-set of Pn,t.

Case 1:
⌈
3n
7

⌉
+ 2t− 4 ≤ γs[Pn,t] ≤

⌈
3n
7

⌉
+ 2t− 3.

Since the subgraph induced by the vertices 1, 11, 12, . . . 1(t−1) forms a star, at least (t−1)

of these vertices belong to S. Let these vertices be 1, 11, 12, . . . 1(t−2). Similarly, the vertices

n, n1, n2, . . . n(t− 2) belong to S. Clearly, the vertices 1 and n dominate the vertices 2 and

(n−1) respectively. Next, the vertices 3 and (n−2) belong to S, where 3 securely dominates

2 and 4, and (n− 2) securely dominates both (n− 1) and (n− 3). Proceeding like this, we

get 5 and (n− 4) belong to S, where 5 securely dominates 6 and (n− 4) securely dominates

(n− 5). Now, the rest of the graph is Pn−12. And we know that,

γs{Pn−12} =

⌈
3(n− 12)

7

⌉
=

⌈
3n

7
− 36

7

⌉
.

We know that
⌈
3n
7

⌉
−6 ≤

⌈
3n
7 − 36

7

⌉
≤

⌈
3n
7

⌉
−5. And γs{Pn,t} = (t−1)+(t−1)+4+γs{Pn−12}.

Therefore,
⌈
3n
7

⌉
− 6 + (t− 1) + (t− 1) + 4 ≤ γs{Pn,t} ≤

⌈
3n
7

⌉
− 5 + (t− 1) + (t− 1) + 4.

Thus
⌈
3n
7

⌉
+ 2t− 4 ≤ γs{Pn,t} ≤

⌈
3n
7

⌉
+ 2t− 3.

Case 2: γs{Pn,t} =
⌈
3n
7

⌉
+ 2t− 4 if and only if n = 7m+ 5, for m ∈ N ∪ {0}.

Since γs{Pn,t} = (t− 1) + (t− 1) + 4 + γs{Pn−12}, for n = 7m+ 5, we get,

γs{P7m+5,t} = (t− 1) + (t− 1) + 4 + γs{P7m+5−12}. Here,

γs{P7m+5−12} =

⌈
3(7m− 7)

7

⌉
= 3m− 3.

For m ∈ N ∪ {0}. Therefore, the LHS is given by,

γs{Pn,t} = (t− 1) + (t− 1) + 4 + γs{Pn−12}

= 2t+ 2 + 3m− 3

= 3m+ 2t− 1.

RHS =

⌈
3n

7

⌉
+ 2t− 4

=

⌈
3(7m+ 5)

7

⌉
+ 2t− 4

=

⌈
3m+

15

7

⌉
+ 2t− 4

= 3m+ 3 + 2t− 4

= 3m+ 2t− 1.

Hence, if n = 7m+ 5, we get γs{Pn,t} =
⌈
3n
7

⌉
+ 2t− 4.

Assume the converse. Let n = 7m+x, where x can be 0, 1, 2, 3, 4, 5, 6. We need to show that

LHS=RHS only if x = 5. Similar to the previous case, the vertices 1, 11, 12, . . . , 1(t − 2),

n, n1, n2, . . . n(t − 2), 3, 5, (n − 2), (n − 4) belong to S. The rest of the graph is Pn−12 =
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P7m+x−12. Therefore,

γs(P7m+x−12) =

⌈
3(7m+ x− 12)

7

⌉
=

⌈
3m+

3(x− 12)

7

⌉
Hence,

RHS = γs(P7m+x,t)

= γs(P7m+x−12 + 2t+ 2

=

⌈
3m+

3(x− 12)

7

⌉
+ 2t+ 2

= 3m+ 2t+

⌈
3(x− 12)

7

⌉
+ 2

LHS =

⌈
3n

7

⌉
+ 2t− 4

=

⌈
3(7m+ x)

7

⌉
+ 2t− 4

=

⌈
3m+

3x

7

⌉
+ 2t− 4

= 3m+ 2t+

⌈
3x

7

⌉
− 4

Now, LHS=RHS implies 3m+ 2t+
⌈
3(x−12)

7

⌉
+ 2 = 3m+ 2t+

⌈
3x
7

⌉
− 4.

i.e.,
⌈
3(x−12)

7

⌉
+ 2 =

⌈
3x
7

⌉
− 4.

Thus,

(5.1)

⌈
3x

7

⌉
−
⌈
3x− 12

7

⌉
= 6.

Substituting x = 0, 1, 2, 3, 4, 5, and 6, we get, only 5 satisfies (??). Therefore, γs{Pn,t} =⌈
3n
7

⌉
+ 2t− 4 if and only if n = 7m+ 5, for m ∈ N ∪ {0}. □

Figure 3. S5(3, 2, 1, 3)
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Theorem 5.2. Let Sn be the star graph with n vertices. Then, γs(Sn(p1, p2, . . . , pn−1)) =∑n−1
i=1 pi + 1.

Proof. Consider the vertices of Sn to be 1, 2, . . . , n, where n is the vertex of degree n −
1. Define, S = ∪n−1

i=1 {i1, i2, . . . , ipi} ∪ {n}, where |S| =
∑n−1

i=1 pi + 1. The vertices of

V (Sn(p1, p2, . . . , pn−1)) \ S are of the form i, for i = 1, 2, . . . , n− 1, and each i is adjacent to

pi pendant vertices in S. Hence, S is a dominating set of Sn(p1, p2, . . . , pn−1). Furthermore,

any vertex i is S-defended by any of its pi pendant vertices in S. Thus, S forms a secure

dominating set of Sn(p1, p2, . . . , pn−1). Since each vertex in S is non-adjacent, S is minimal.

Suppose there exists a γs-set of Sn(p1, p2, . . . , pn−1), denoted as S′, with |S′| ≤ |S|. For

each i ∈ {1, 2, . . . , n− 1}, since the graph induced by the set of vertices {i, i1, i2, . . . , ipi} is

a star, S′ contains at least pi vertices from each set. That is, |S′| ≥
∑n−1

i=1 pi.

Suppose S′ contains exactly pi vertices from each set {i, i1, i2, . . . , ipi}. In that case, none

of these vertices S-defends the vertex n. Since S′ is a γs-set of Sn(p1, p2, . . . , pn−1), either

n ∈ S′ or any vertex adjacent to n belongs to S′. Consequently, |S′| ≥
∑n−1

i=1 pi. Therefore,

|S′| ≥ |S|. Hence, S is a γs-set of Sn(p1, p2, . . . , pn−1). □

Figure 4. Kg(3, 2, 1, 3)

Lemma 5.3. γ(Kg) =
∑n

i=1 pi + 1.

Proof. Let the central vertex ofKg be un+1, and the vertices adjacent to un+1 be u1, u2, . . . , un.

The vertices adjacent to ui are ui1, ui2, . . . , uipi for i = 1, 2, . . . , n, and the vertices adjacent

to uij are denoted as u′ij for j = 1, 2, . . . , pi and i = 1, 2, . . . , n. Define S = {uij |j =

1, 2, . . . , pi, i = 1, 2, . . . , n} ∪ {un+1}. Here, V (Kg) \ S = {u1, u2, . . . , un, } ∪ {u′ij |i =

1, 2, . . . , n, j = 1, 2, . . . , pi}.
From the figure itself, it is clear that any vertex in V (Kg) \ S is adjacent to at least

one vertex in S. Thus, S forms a dominating set of Kg. Since all the vertices in S are

non-adjacent, S is minimal. We have to show that S is a γ-set of Kg.

Suppose S′ is a γ-set of Kg. Since u′ij is a pendant vertex adjacent to uij , either u′ij or

uij belongs to S′ for j = 1, 2, . . . , pi and i = 1, 2, . . . , n. Hence, |S′| ≥
∑n

i=1 pi. Since neither

uij nor u′ij dominates the central vertex un+1, at least one more vertex is needed to form
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a dominating set of Kg. Since S′ is a dominating set of Kg, |S′| ≥
∑n

i=1 pi + 1. Thus,

|S′| ≥ |S|. Hence, S is a γ-set of Kg.

□

Theorem 5.4. γs(Kg) =
∑n

i=1 pi + 1.

Proof. From Lemma ??, we have, γ(Kg) =
∑n

i=1 pi + 1. Define S = {uij |j = 1, 2, . . . , pi, i =

1, 2, . . . , n} ∪ {un+1}, which is the same as defined in the above proof. Clearly, S is a

dominating set of Kg. We need to show that S forms a secure dominating set of Kg.

Here, V (Kg) \ S = {u1, u2, . . . , un, } ∪ {u′ij |i = 1, 2, . . . , n, j = 1, 2, . . . , pi}. Each vertex of

the form ui is S-defended by the central vertex un+1 for all i = 1, 2, . . . , n. Additionally, each

vertex of the form u′ij is S-defended by the vertex uij for i = 1, 2, . . . , n and j = 1, 2, . . . , pi.

Hence, S is a secure dominating set of Kg. Since S is a γ-set of Kg, S form a γs-set of Kg.

Therefore, γ(Kg) = |S| =
∑n

i=1 pi + 1. □

6. Conclusions

Secure domination ensures that every node in the network is either secure or has a neigh-

bouring secure node. This enhances network resilience against attacks, failures, or disrup-

tions, ensuring continuous operation and data integrity. It is particularly important for

critical infrastructure such as communication networks, financial systems, and health care

networks. Since the secure domination problem is NP -complete, it is relevant to find the

same in well-known networks.

Thorn graphs are well-known networks in which an atom is represented by each vertex

and a chemical relationship between these atoms is represented by each edge. The present

work derives the secure domination number of thorn graphs and generalized thorn paths,

which have wide applications in the fields of medicine and chemistry by providing a way to

visualize and analyze the molecular framework.

This kind of research has many applications because secure domination provides insights

into the structural properties of the network, enabling the design of more robust and efficient

network topologies. This is particularly valuable in the planning and development of new

networks, ensuring that they are built to withstand potential threats and challenges. Hence,

secure domination is undoubtedly a desirable feature for interconnection networks in the

present day. We can expand this study by examining various other generalized versions of

thorn graphs available in the literature. Instead of using paths as the base graph, we can

choose different graphs to create generalized thorn graphs and explore secure domination in

those configurations.
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