
تعداد نشریات | 26 |
تعداد شمارهها | 404 |
تعداد مقالات | 3,552 |
تعداد مشاهده مقاله | 5,509,351 |
تعداد دریافت فایل اصل مقاله | 3,769,403 |
مدلسازی تراکم زهکشی بوسیله بارش در اقلیمهای مختلف استان کردستان | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 10، دوره 5، شماره 2، 1404، صفحه 160-181 اصل مقاله (1.23 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2025.16773.1559 | ||
نویسندگان | ||
کامران چپی* 1؛ شمیم فیضی2؛ زانیار فاتحی3 | ||
1گروه آموزشی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
2کارشناس ارشد آبخیزداری، معاونت دانشجویی، دانشگاه کردستان، سنندج، ایران | ||
3کارشناس ارشد مهندسی منابع آب، گروه مهندسی و مدیریت منابع آب، مؤسسه آموزش عالی توسعه دانش، سنندج، ایران | ||
چکیده | ||
تراکم زهکشی یکی از مهمترین شاخصهای ژئومورفولوژیک برای بیان وضعیت آبراههها، پتانسیل سیلخیزی، پتانسیل زمینلغزش، تکامل توپوگرافی و فرسایش حوزههای آبخیز میباشد. این شاخص بوسیله عوامل مختلفی مانند اقلیم، پوشش گیاهی، زمینشناسی، زمان و مورفومتری حوضه تحت تأثیر قرار میگیرد. در این میان، رابطه تراکم زهکشی و اقلیم اولاً در تعیین حساسیت منابع آب به تغییر اقلیم از اهمیت ویژهای برخوردار است، دوماً مشخص میکند که انتخاب این شاخص برای بررسیهای اقلیمی و هیدرولوژیکی چقدر به واقعیت نزدیک است و سوماً تعیین میکند که آیا در اقلیمهای مختلف، مقدار تراکم زهکشی تفاوت معنیدار دارد که لازم باشد این تغییرات در بررسی پتانسیل سیلخیزی، زمینلغزش و فرسایش خاک در نظر گرفته شود. به منظور مدلسازی تراکم زهکشی در اقالیم مختلف، استان کردستان بر اساس اقلیمنمای دومارتن، به چهار تیپ اقلیمی مرطوب، نیمهمرطوب، مدیترانهای و نیمهخشک تقسیم شده که از آنها به ترتیب 40، 87، 62 و 57 حوزه آبخیز انتخاب شدند. تراکم زهکشی حوضهها از رابطه هورتون و بارش متوسط سالانه به عنوان مهمترین شاخص اقلیمی از نقشه همبارش استان کردستان تعیین گردید. نتایج حاصل از تجزیه و تحلیلهای آماری نشان داد که نوع اقلیم اثر معنیداری بر روی میزان تراکم زهکشی دارد. بیشترین میانگین تراکم زهکشی با مقدار 71/1 کیلومتر بر کیلومترمربع در اقلیم مدیترانهای و کمترین آن با مقدار 12/1 کیلومتر بر کیلومتر مربع در اقلیم مرطوب بوده است. همچنین، حداکثر تراکم زهکشی در بارش متوسط سالانه 400 میلیمتر اتفاق میافتد و در بارشهای کمتر و بیشتر، تراکم زهکشی کاهش مییابد. مدلسازی تراکم زهکشی بر اساس بارش متوسط سالانه در اقلیمهای مختلف مشخص کرد که تراکم زهکشی در هر اقلیم رفتار متفاوتی دارد، بهطوری که نوع مدل در اقلیم مرطوب، نمایی، در اقلیم نیمهمرطوب، خطی و در اقلیمهای مدیترانهای و نیمهخشک، سیگموئید (S-shaped curve) میباشد. یافتههای این تحقیق مؤید این حقیقت است که استفاده از شاخص تراکم زهکشی در مطالعات سیلخیزی، زمینلغزش و فرسایش حوزههای آبخیز انتخاب درستی است و توجه به تغییرات آن در اقلیمهای مختلف، دقت مطالعات را افزایش میدهد. یافتهها همچنین آشکار میکنند که تعیین تراکم زهکشی با دقت بالا بر اساس بارش امکانپذیر است که البته رعایت احتیاط ضروری میباشد. | ||
کلیدواژهها | ||
بارش متوسط سالانه؛ حوزه آبخیز؛ طبقهبندی اقلیمی؛ کردستان؛ مدلسازی تراکم زهکشی | ||
مراجع | ||
منابع آزادطلب، مهناز، شهابی، هیمن، شیرزادی، عطااله، و چپی، کامران (1399). پهنهبندی خطر سیلاب در شهر سنندج با استفاده از مدلهای ترکیبی شاخص آماری و تابع شواهد قطعی. مطالعات شهری، 9(36)، 27-40. doi: 10.34785/J011.2021.801 اداره کل حفاظت محیط زیست استان کردستان (1403). موقعیت جغرافیایی استان کردستان. اقتباس از سایت اداره کل حفاظت محیط زیست کردستان. اداره کل هواشناسی کردستان (1403). ایستگاههای هواشناسی سینوپتیک. اقتباس از سایت اداره کل هواشناسی کردستان. سازمان مدیریت و برنامهریزی استان کردستان (1397). بازنگری و تهیه سند آمایش استان کردستان، گزارش فصل اول: تحلیل وضعیت استان؛ تحلیل وضعیت منابع طبیعی و محیط زیست، 234 صفحه. طباطبائی، محمد و قصریانی، فرهنگ (1371). منابع طبیعی کردستان (جنگلها و مراتع). چاپ اول، واحد انتشارات بخش فرهنگی دفتر مرکزی جهاد دانشگاهی، 767 صفحه. مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان (1403الف). سیمای خاکهای استان کردستان. اقتباس از سایت مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان. مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان (1403ب). منابع طبیعی استان کردستان. اقتباس از سایت مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان.
References Abrahams, A. D. (1972). Drainage densities and sediment yields in eastern Australia. Australian Geographical Studies, 10(1), 19-41. doi: 10.1111/j.1467-8470. 1972.tb00127.x Abrahams, A. D., & Ponczynski, J. J. (1984). Drainage density in relation to precipitation intensity in the USA. Journal of Hydrology, 75(1-4), 383-388. doi: 10.1016/0022-1694(84)90061-1 Adhikari, S. (2020). Morphometric analysis of a drainage basin: A study of Ghatganga River, Bajhang District, Nepal. The Geographic Base, 7, 127-144. Ahmadi, S., Amjadi, H., Chapi, K., Soodmand Afshar, R., & Ebrahimi, B. (2023). Fuzzy flash flood risk and vulnerability assessment for the city of Sanandaj, Kurdistan Province, Iran. Natural Hazards, 115(1), 237-259. doi: 10.1007/s11069-022-05552-z Ahmed, A., Alrajhi, A., & Alquwaizany, A. S. (2021). Identification of groundwater potential recharge zones in flinders ranges, South Australia using remote sensing, GIS, and MIF techniques. Water, 13(18), 2571. doi: 10.3390/w13182571 Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. doi: 10.1109/TAC.1974.1100705 Ali, A. M. (2024). Making Different Topographic Maps with the Surfer Software Package. Engineering, Technology & Applied Science Research, 14(1), 12556-12560. Al-neama, S. N., Yang, S., & Yahya, B. M. (2022). Evaluation of surface run-off potential of basins in Nineveh governorate, Iraq based on morphometric analysis, using RS and GIS. Materials Today: Proceedings, 60, 1753-1768. doi: 10.1016/j.matpr.2021.12.313 Arabameri, A., Pal, S. C., Rezaie, F., Chakrabortty, R., Chowdhuri, I., Blaschke, T., & Ngo, P. T. T. (2021). Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. Journal of Environmental Management, 284, 112067. doi: 10.1016/j.jenvman.2021.112067 Avand, M., Mohammadi, M., Mirchooli, F., Kavian, A., & Tiefenbacher, J. P. (2023). A new approach for smart soil erosion modeling: integration of empirical and machine-learning models. Environmental Modeling & Assessment, 28(1), 145-160. doi: 10.1007/s10666-022-09858-x Azadtalab, M., Shahabi, H., Shirzadi, A., & Chapi, K. (2020). Flood hazard mapping in Sanandaj using combined models of statistical index and evidential belief function. Motaleate Shahri, 9(36), 27-40. doi: 10.34785/J011.2021.801 [In Persian] Bandara, C. M. (1974). Drainage density and effective precipitation. Journal of Hydrology, 21(2), 187-190. doi: 10.1016/0022-1694(74)90036-5 Bogale, A. (2021). Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia. Applied Water Science, 11(7), 122. doi: 10.1007/s13201-021-01447-9 Brooks, K. N., & Eckman, K. (2000). Global Perspective of Watershed Management, In Land Stewardship in the 21st Century: The Contributions of Watershed Management: Conference Proceedings, Tucson, Arizona, March 13-16, 2000 (p. 11). US Department of Agriculture, Forest Service, Rocky Mountain Research Station. Bujak-Ozga, I., van Meerveld, H. J., Rinaldo, A., & von Freyberg, J. (2023). Short‐term dynamics of drainage density based on a combination of channel flow state surveys and water level measurements. Hydrological Processes, 37(12), e15041. doi: 10.1002/hyp.15041 Carlston, C. W. (1963). Drainage density and streamflow. US Government Printing Office. Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G., Elliott, W. C., & Hendricks, D. M. (2003). The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology, 202(3-4), 195-223. doi: 10.1016/j.chemgeo.2002.09.001 Chorley, R. J. (1957). Climate and morphometry. The Journal of Geology, 65(6), 628-638. doi: 10.1086/626468 Chorley, R. J., & Morgan, M. A. (1962). Comparison of morphometric features, Unaka Mountains, Tennessee and North Carolina, and Dartmoor, England. Geological Society of America Bulletin, 73(1), 17-34. doi: 10.1130/0016-7606(1962)73[17: COMFUM]2.0.CO;2 Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., & Grieve, S. W. (2016). The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes. Journal of Geophysical Research: Earth Surface, 121(10), 1724-1745. doi: 10.1002/2015JF003747 Collins, D. B. G., & Bras, R. L. (2010). Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands. Water Resources Research, 46(4). doi: 10.1029/2009WR008615 Dang, M. T., & Nguyen, D. B. (2018). Application of GIS technology to establish a drainage density hierarchical map for flood hazard zoning in Lam River basin. Journal of Mining and Earth Sciences, 59, 32-42. Daniel, J. R. K. (1981). Drainage density as an index of climatic geomorphology. Journal of Hydrology, 50, 147-154. doi: 10.1016/0022-1694(81)90065-2 De Martonne, E. (1926). Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences, 182, 1395–1398. Derikvand, S. (2024). Analysis of the development of drainage basins during active fold growth (Chenareh anticline, Zagros fold-and-thrust belt, Iran). Geopersia, 14(2), 419-438. doi: 10.22059/geope.2024.373766.648748 De Wit, M., & Stankiewicz, J. (2006). Changes in surface water supply across Africa with predicted climate change. Science, 311(5769), 1917-1921. doi: 10.1126/science.1119929 Di Lazzaro, M., Zarlenga, A., & Volpi, E. (2014). A new approach to account for the spatial variability of drainage density in rainfall-runoff modelling. Boletin Geologico y Minero, 125(3), 301-313. Dingman, S. L. (1978). Drainage density and streamflow: A closer look. Water Resources Research, 14(6), 1183-1187. doi: 10.1029/WR014i006p01183 Doornkamp, J. C., & King, C. A. (1971). Numerical analysis in geomorphology: an introduction. 1st Edition; Edward Arnold, 372 pages. https://cir.nii.ac.jp/crid/1130282272730993792 Environmental Protection Department of Kurdistan Province. (2024). Geographical position of Kurdistan province. Accessed on 6 January 2024. [In Persian] Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Applied Water Science, 7(7), 3825-3840. doi: 10.1007/s13201-017-0534-4 Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Applied Water Science, 4(1), 51-61. doi: 10.1007/s13201-013-0129-7 García, M. J. L., & Camarasa, A. M. (1999). Use of geomorphological units to improve drainage network extraction from a dem: comparison between automated extraction and photointerpretation methods in the Carraixet catchment (Valencia, Spain). International Journal of Applied Earth Observation and Geoinformation, 1(3-4), 187-195. doi: 10.1016/S0303-2434(99)85012-0 Gao, H., Liu, F., Yan, T., Qin, L., & Li, Z. (2022). Drainage density and its controlling factors on the eastern margin of the Qinghai–Tibet Plateau. Frontiers in Earth Science, 9, 755197. doi: 10.3389/feart.2021.755197 Gregory, K. J. (1976). Drainage networks and climate. Pp. 289-315. In: Derbyshire E (eds). Geomorphology and climate, John Wiley, New York. Gregory, K. J., & Gardiner, V. (1975). Drainage density and climate, Zeitschrift fur Geomorphologie, 19(3), 287-298. doi: 10.1127/zfg/19/1975/287 Gregory, K. J., & Walling, D. E. (1968). The variation of drainage density within a catchment. Hydrological Sciences Journal, 13(2), 61-68. doi: 10.1080/02626666809493583 Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American geophysical union, 13(1), 350-361. doi: 10.1029/TR013i001p00350 Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 56(3), 275-370. doi: 10.1130/0016-7606(1945)56[275: EDOSAT]2.0.CO;2 Jaafarzadeh, M. S., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Rouhani, H. (2021). Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Scientific Reports, 11(1), 5587. doi: 10.1038/s41598-021-85205-6 Jothimani, M., Abebe, A., & Berhanu, G. (2022, March). Application of remote sensing, GIS, and drainage morphometric analysis in groundwater potential assessment for sustainable development in Iyenda River Catchment, Konso Zone, Rift Valley, Southern Ethiopia. 2021 International Conference on Innovative and Sustainable Technologies in Civil Engineering, 24-25 September 2021, Bapatla, India, doi: 10.1088/1755-1315/982/1/012032 Kashiwaya, K. (1983). A mathematical model for the temporal change of drainage density. Transactions of Japanese Geomorphological Union, 4, 25-31. Kelson, K. I., & Wells, S. G. (1989). Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, USA. Earth Surface Processes and Landforms, 14(8), 671-690. doi: 10.1002/esp.3290140803 Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge didistribuzione. Giorn Dell'inst Ital Degli Att, 4, 89-91. Krishnan, A., & Ramasamy, J. (2024). Morphometric assessment and prioritization of the South India Moyar river basin sub-watersheds using a geo-computational approach. Geology, Ecology, and Landscapes, 8(2), 129-139. doi: 10.1080/24749508.2022.2109819 Kumar, M., Singh, P., & Singh, P. (2023). Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India. Ecological Informatics, 74, 101980. doi: 10.1016/j.ecoinf.2023.101980 Kurdistan Agricultural and Natural Resources Research and Education Center. (2024a). Soil landscapes of Kurdistan province. Accessed on 8 January 2024. [In Persian] Kurdistan Agricultural and Natural Resources Research and Education Center. (2024b). Natural resources of Kurdistan province. Accessed on 8 January 2024. [In Persian] Kurdistan Management and Planning Organization. (2018). Review and preparation of land-use planning of Kurdistan province. First chapter report: Kurdistan province situation analysis; Environment and natural resources analysis, pp. 234. [In Persian] Kurdistan Meteorological Bureau. (2024). Synoptic weather station. Accessed on 6 January 2024. [In Persian] Lin, P., Pan, M., Wood, E. F., Yamazaki, D., & Allen, G. H. (2021). A new vector-based global river network dataset accounting for variable drainage density, Scientific Data, 8(1), 28. doi: 10.1038/s41597-021-00819-9 Lodes, E., Scherler, D., Wittmann, H., Schleicher, A. M., Stammeier, J. A., Loyola Lafuente, M. A., & Grigusova, P. (2024). Influence of lithology and biota on stream erosivity and drainage density in a semi‐arid landscape, Central Chile. Journal of Geophysical Research: Earth Surface, 129(11), e2024JF007684. doi: 10.1029/2024JF007684 Luijendijk, E. (2022). Transmissivity and groundwater flow exert a strong influence on drainage density. Earth Surface Dynamics, 10(1), 1-22. doi: 10.5194/esurf-10-1-2022 Mandal, K., Saha, S., & Mandal, S. (2021). Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geoscience Frontiers, 12(5), 101203. doi: 10.1016/j.gsf.2021.101203 Mao, Y., Li, Y., Teng, F., Sabonchi, A. K., Azarafza, M., & Zhang, M. (2024). Utilizing hybrid machine learning and soft computing techniques for landslide susceptibility mapping in a drainage basin. Water, 16(3), 380. doi: 10.3390/w16030380 Melton, M. (1957) An Analysis of the Relations Among Elements of Climate, Surface Properties and Geomorphology. Department of Geology, Columbia University, Technical Report, 11, Project NR 389-042. Office of Navy Research, New York. Melton, M. A. (1958). Correlation structure of morphometric properties of drainage systems and their controlling agents. The Journal of Geology, 66(4), 442-460. doi: 10.1086/626527 Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi: 10.1029/2007WR006744 Moglen, G. E., Eltahir, E. A., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Resources Research, 34(4), 855-862. doi: 10.1029/97WR02709 Montgomery, D. R., & Dietrich, W. E. (1988). Where do channels begin? Nature, 336(6196), 232. doi: 10.1038/336232a0 Montgomery, D. R., & Dietrich, W. E. (1989). Source areas, drainage density, and channel initiation. Water Resources Research, 25(8), 1907-1918. doi: 10.1029/WR025i008p01907 Nguyen, K. A., & Chen, W. (2021). DEM-and GIS-based analysis of soil erosion depth using machine learning. ISPRS International Journal of Geo-Information, 10(07), 452. doi: 10.3390/ijgi10070452 Odoh, B. I., & Nwokeabia, C. N. (2024). Impact of Drainage Density and Geological Factors on Flood Risk: A Comprehensive Study of Abia State. Researchers Journal of Science and Technology, 4(5), 1-21. Oguchi, T. (1997). Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surface Processes and Landforms, 22(2), 107-120. doi: 10.1002/(SICI)1096-9837(199702)22:2%3C107::AID-ESP680%3E3.0.CO;2-U Pallard, B., Castellarin, A., & Montanari, A. (2009). A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences, 13(7), 1019-1029. doi: 10.5194/hess-13-1019-2009 Pande, C., Moharir, K., & Pande, R. (2021). Assessment of morphometric and hypsometric study for watershed development using spatial technology–a case study of Wardha river basin in Maharashtra, India. International Journal of River Basin Management, 19(1), 43-53. doi: 10.1080/15715124.2018.1505737 Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7, 217-232. doi: 10.1007/s13201-014-0238-y Rinaldo, A., Dietrich, W. E., Rigon, R., Vogel, G. K., & Rodriguez-Iturbe, I. (1995). Geomorphological signatures of varying climate. Nature, 374(6523), 632. doi: 10.1038/374632a0 Ruhe, R. V. (1952). Topographic discontinuities of the Des Moines lobe. American Journal of Science, 250(1), 46-56. Sajadi, P. (2018). Modeling of Qorveh-Dehgolan basin (Kurdistan-Iran) response to hydrological variability. Ph.D. Thesis, Jawaharlal Nehru University, New Delhi, New Delhi-110067, India. Sajadi, P., Singh, A., Mukherjee, S., & Chapi, K. (2020). Influence of structural lineaments on drainage morphometry in Qorveh-Dehgolan basin, Kurdistan, Iran. Geocarto International, 35(15), 1722-1749. doi: 10.1080/10106049.2019.1573927 Sajadi, P., Singh, A., Mukherjee, S., Luo, P., Chapi, K., & Salari, M. (2021). Multivariate statistical analysis of relationship between tectonic activity and drainage behavior in Qorveh-Dehgolan basin Kurdistan, Iran. Geocarto International, 36(5), 540-562. doi: 10.1080/10106049.2019.1611948 Sajadi, P., Singh, A., Mukherjee, S., Sang, Y. F., Chapi, K., & Salari, M. (2022). Drainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniques. Geocarto International, 37(3), 896-925. doi: 10.1080/10106049.2020.1750060 Salvi, S., Tiwari, H., & Bobade, S. (2025). Morphometric evaluation of Manjara watershed, Latur district, Maharashtra, India: a GIS approach. Innovative Infrastructure Solutions, 10(3), 106. doi: 10.1007/s41062-025-01862-w Sangireddy, H., Carothers, R. A., Stark, C. P., & Passalacqua, P. (2016). Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data. Journal of Hydrology, 537, 271-282. doi: 10.1016/j.jhydrol.2016.02.051 Sarkar, P., Kumar, P., Vishwakarma, D. K., Ashok, A., Elbeltagi, A., Gupta, S., & Kuriqi, A. (2022). Watershed prioritization using morphometric analysis by MCDM approaches. Ecological Informatics, 70, 101763. doi: 10.1016/j.ecoinf.2022.101763 Shahabedini, S., Ghahramany, L., Pulido, F., Khosravi, S., & Moreno, G. (2018). Estimating leaf biomass of pollarded lebanon oak in open silvopastoral systems using allometric equations. Trees, 32, 99-108. doi: 10.1007/s00468-017-1614-7 Sheng, T. C. (1990). Watershed management field manual. Watershed survey and planning (No. 13/6), FAO, Rome, Italy. Singh, C. K. (2018). Geospatial applications for natural resources management. 1st Edition; CRC Press. 309 pages. Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The annals of mathematical statistics, 19(2), 279-281. doi: 10.1214/aoms/1177730256 Smith, K. G. (1958). Erosional processes and landforms in badlands national monument, South Dakota. Geological Society of America Bulletin, 69(8), 975-1008. doi: 10.1130/0016-7606(1958)69[975: EPALIB]2.0.CO;2 Smith, V. B., David, C. H., Cardenas, M. B., & Yang, Z. L. (2013). Climate, river network, and vegetation cover relationships across a climate gradient and their potential for predicting effects of decadal-scale climate change. Journal of Hydrology, 488, 101-109. doi: 10.1016/j.jhydrol.2013.02.050 Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142. doi: 10.1130/0016-7606(1952)63[1117: HAAOET]2.0.CO;2 Strahler, A. (1964) Quantitative Geomorphology of Drainage Basins and Channel Networks. Pp. 439-476, In: Chow V (ed). Handbook of Applied Hydrology, McGraw-Hill, New York. Sukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based morphometric analysis: a review, Global Colloquium on GeoSciences and Engineering, 18–19 October 2017, Bandung, Indonesia. doi: 10.1088/1755-1315/118/1/012028/meta Tabatabaei, M., & Ghasriani, F. (1992). Natural resources of Kurdistan (Forests and Rangelands). 1st Edition; Jahad-e-Daneshgahi publishing office, 767 pages. [In Persian] Talling, P. J., & Sowter, M. J. (1999). Drainage density on progressively tilted surfaces with different gradients, Wheeler Ridge, California. Earth Surface Processes and Landforms, 24(9), 809-824. doi: 10.1002/(SICI)1096-9837(199908)24:9<809: AID-ESP13>3.0.CO;2-R Tanaka, S. (1957). The drainage-density and rocks (Granitic and Paleozoic) in the Setouchi sea coast region, Western Japan. Geographical Review of Japan, 30(7), 564-578. Tassew, B. G., Belete, M. A., & Miegel, K. (2023). Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2), 195-209. doi: 10.1080/15715124.2021.1938091 Thurow, T. L., & Juo, A. S. (1995). The rationale for using a watershed as the basis for planning and development. Pp. 93-116. In: Anthony S R Juo and Russell D Freed (eds). Agriculture and the environment: Bridging food production and environmental protection in developing countries, ASA Special Publications. doi: 10.2134/asaspecpub60.c6 Tokunaga, E. (1978). Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, (13), 1-27. Torrefranca, I., & Otadoy, R. E. (2024). GIS-based watershed characterization and morphometric analysis in Bohol Watersheds, Philippines. Geology, Ecology, and Landscapes, 8(4), 527-538. doi: 10.1080/24749508.2022.2158554 Tucker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage density, and landscape morphology. Water Resources Research, 34(10), 2751-2764. https://doi.org/10.1029/98WR01474 Tucker, G. E., & Slingerland, R. (1997). Drainage basin responses to climate change. Water Resources Research, 33(8), 2031-2047. doi: 10.1029/97WR00409 Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3-4), 187-202. doi: 10.1016/S0169-555X (00)00056-8 Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 99-114. Waikar, M. L., & Nilawar, A. P. (2014). Morphometric analysis of a drainage basin using geographical information system: a case study. International Journal of Multidisciplinary and Current Research, 2(2014), 179-184. Wilson, L. (1971). Drainage density, length ratios, and lithology in a glaciated area of southern Connecticut. Geological Society of America Bulletin, 82(10), 2955-2956. doi: 10.1130/0016-7606(1971)82[2955: DDLRAL]2.0.CO;2 Zhao, R., Arabameri, A., & Santosh, M. (2024). Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. Environmental Science and Pollution Research, 31(10), 15443-15466. doi: 10.1007/s11356-024-32075-w Zinke, P. J. (1960). Photo Interpretation in Hydrology and Watershed Management. Pp. 539-560. In: Manual of Photographic Interpretation. American Society of Photogrammetry.
| ||
آمار تعداد مشاهده مقاله: 117 تعداد دریافت فایل اصل مقاله: 74 |