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Abstract. The purpose of the present paper is to discuss about a gener-

alized Sasakian space form with quarter-symmetric metric connection satis-

fying h-almost conformal Ricci-Bourguignon soliton and h-almost conformal

η-Ricci-Bourguignon soliton. Here, we have evolved the nature of h-almost

conformal Ricci-Bourguignon soliton on a generalized Sasakian space form with

quarter-symmetric metric connection when the potential vector field is to be

considered as a conformal vector field, a torse-forming vector field or a torqued

vector field. Then we have established that a generalized Sasakian space

form with quarter-symmetric metric connection satisfying gradient h-conformal

Ricci-Bourguignon soliton to turn out an Einstein manifold. Later, we have

constructed Laplacian equation from h-almost conformal η-Ricci-Bourguignon

soliton with quarter-symmetric metric connection when the potential vector

field ξ is of gradient of a smooth function f . Finally we have examined the

existence of an extended generalized φ-recurrent generalized Sasakian space

form with quarter-symmetric metric connection endowing h-almost conformal

η-Ricci-Bourguignon soliton.
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1. Introduction

The concept of a soliton flows from the idea of a solitary wave that arises from

a balance between nonlinear and dispersive effects which are associated with

physical system. Solitons preserve their shapes and speeds while propagating

freely, at constant velocity and retrieve it after collisions with other such waves.

Solitons provide stable solutions of a wide class of weakly nonlinear dispersive

partial differential equations describing physical systems. The concept of a

Ricci flow was formulated in the early 1980s by R. Hamilton, who was developed

by Eells and Sampson’s work on harmonic map heat flow [12, 15]. Ricci flow

is an evolution equation on a smooth manifold M with a Riemannian metric

g(t) defined as follows
∂

∂t
g(t) = −2S.

Ricci soliton, which is a natural generalization of an Einstein manifold, is de-

fined on a semi-Riemannian manifold (M, g) by

S +
1

2
£Y g = µg

where £Y is the Lie derivative along the vector field Y , S is the Ricci tensor of

(M, g) and µ is a real constant. If Y = ∇f for some function f on M , the Ricci

soliton transforms into a gradient Ricci soliton. A soliton becomes shrinking,

steady and expanding according as µ > 0, µ = 0 and µ < 0 respectively.

In [4], N. Basu and A. Bhattacharyya constructed the notion of conformal

Ricci soliton, defined as:

£V g + 2S + [2µ− (p+
2

n
)]g = 0, (1.1)

where £V is the Lie derivative along the vector field V , p defined as a scalar non-

dynamical field(time dependent scalar field), µ is constant, n is the dimension

of the manifold.

In 1979, the idea of the Ricci-Bourguignon flow (or RB flow) as a gener-

alization of Ricci flow was developed by Jean-Pierre Bourguignon [6] using

some unpublished work of Lichnerowicz and a paper of Aubin [2]. The Ricci-

Bourguignon flow is an evolution equation for metrics on a Riemannian mani-

fold given by
∂

∂t
g(t) = −2(S − rΛg), (1.2)

where Λ ∈ R is a constant and r is the scalar curvature of the Riemannian

metric g. It should be observed that the right hand side of the evolution

equation (1.2) is of special interest for special values of Λ in particular [11].

1. Λ = 1
2 , the Einstein tensor S − r

2g (Einstein soliton).

2. Λ = 1
n , the traceless Ricci tensor S − r

ng.

3. Λ = 1
2(n−1) , the Schouten tensor S − r

2(n−1)g (Schouten soliton).

4. Λ = 0, the Einstein tensor S (Ricci soliton).
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In [11], S. Dwivedi introduced the concept of Ricci-Bourguignon soliton

which generalize Ricci solitons. In the paper, the author explained integral

formulas for compact gradient Ricci-Bourguignon solitons and compact gradi-

ent Ricci-Bourguignon almost solitons.

A Riemannian manifold (M, g) is called a Ricci-Bourguignon soliton (or RB

soliton) if there exists a smooth vector field V satisfying the following equation

S +
1

2
£V g = (µ+ rΛ)g, (1.3)

for some real constant µ and the Lie derivative £V g.

The Ricci-Bourguignon soliton appears as a self-similar solution to Ricci-

Bourguignon flow and often emerges as a limit of dilation of singularities in

the Ricci-Bourguignon flow [7]. The Ricci-Bourguignon soliton is said to be

shrinking, steady or expanding if µ is positive, zero or negative, respectively.

If the vector field V is the gradient of a smooth function f , then g is called

a gradient Ricci-Bourguignon soliton and equation (1.3) becomes

∇∇f + S = (µ+ rΛ)g. (1.4)

From the above identities (1.1) and (1.3), two new entities will be introduced

now: (a) h-almost conformal Ricci-Bourguignon soliton which generalizes both

conformal soliton and Ricci-Bourguignon soliton, and (b) h-almost conformal

η-Ricci-Bourguignon soliton which generalizes both conformal soliton and η-

Ricci-Bourguignon soliton.

An n-dimensional complete Riemannian or pseudo-Riemannian manifold

(M, g) is said to be h-almost conformal Ricci-Bourguignon soliton, and de-

noted by (Mn, g, h, V, µ) if there exists a smooth vector field V satisfying the

following equation

S +
h

2
£V g = (µ− 1

2
(p+

2

n
) + rΛ)g, (1.5)

for some smooth functions h and µ and the Lie derivative £V g.

The h-almost conformal Ricci-Bourguignon soliton is said to be shrinking,

steady or expanding if µ is positive, zero or negative, respectively.

If the vector field V is the gradient of a smooth function f , then the soliton

equation becomes

h∇∇f + S = (µ− 1

2
(p+

2

n
) + rΛ)g, (1.6)

and the soliton is called h-almost gradient conformal Ricci-Bourguignon soliton.

An n-dimensional complete Riemannian or pseudo-Riemannian manifold

(M, g) is said to be h-almost conformal η-Ricci-Bourguignon soliton, and de-

noted by (Mn, g, h, ξ, µ, β) if there exists a smooth vector field V satisfying the



128 Sampa Pahan

following equation

S +
h

2
£V g = (µ− 1

2
(p+

2

n
) + rΛ)g + βη ⊗ η, (1.7)

where h and µ are smooth functions, β is a real constant and η is a 1-form.

The h-almost conformal Ricci-Bourguignon soliton is said to be shrinking,

steady or expanding if µ is positive, zero or negative, respectively.

If we consider the soliton vector field as a gradient of a smooth function f ,

then the soliton equation becomes

h∇∇f + S = (µ− 1

2
(p+

2

n
) + rΛ)g + βη ⊗ η, (1.8)

and the soliton is called gradient h-almost conformal η-Ricci-Bourguignon soli-

ton.

In [18], D. G. Prakasha, A. M. Ravindranatha, S. K. Chaubey, P. Veere-

sha and Y. J. Suh investigated some results of the h-almost Ricci solitons

and h-almost gradient Ricci solitons on generalized Sasakian-space-forms. [10]

S. K. Chaubey and Y. J. Suh worked on Ricci-Bourguignon solitons and the

features of Fischer-Marsden conjecture within the framework of generalized

Sasakian-space-forms with β-Kenmotsu structure. They also obtained gener-

alized Sasakian-space-form with β-Kenmotsu structure satisfying the Fischer-

Marsden equation to be a conformal gradient soliton. [20] A. Sardar and A.

Sarkar distinguished Ricci-Yamabe solitons and gradient Ricci-Yamabe solitons

on 3-dimensional generalized Sasakian space forms with quasi Sasakian metric.

[17] S. Kumar, P. Kumar and B. Pal established some interesting results for

solenoidal and concurrent vector fields on warped product space with almost

Ricci-Bourguignon soliton.

Motivated by the above outcomes and explorations, we discover in this pa-

per a generalized Sasakian space form with quarter-symmetric metric connec-

tion satisfying h-almost conformal Ricci-Bourguignon Soliton. The paper is

arranged as below : In Sections 2 and 3, we present some characteristics of

a generalized Sasakian space form and quarter-symmetric metric connection.

In Section 4, the nature of the soliton on a generalized Sasakian space form

with quarter-symmetric metric connection under some certain conditions have

been discussed. Then we have investigated that a generalized Sasakian space

form with quarter-symmetric metric connection satisfying gradient h-conformal

Ricci-Bourguignon soliton to become an Einstein manifold. Later, we have

analyzed Laplacian equation from h-almost conformal η-Ricci-Bourguignon

soliton with quarter-symmetric metric connection when the potential vector

field ξ is of gradient type. In Section 5, we inspected about a generalized

Sasakian space form with quarter-symmetric metric connection with h-almost

conformal η-Ricci-Bourguignon soliton and also have examined the existence

of an extended generalized φ-recurrent generalized Sasakian space form with
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quarter-symmetric metric connection endowing h-almost conformal η-Ricci-

Bourguignon soliton.

2. Generalized Sasakian Space Form

The sectional curvature of a Riemannian manifold (M, g) plays an important

role in differential geometry. The curvature tensor of a Riemannian manifold

with constant sectional curvature c is given by the following equation

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y },

for all X,Y, Z ∈ χ(M). Then the Riemannian manifold with constant sectional

curvature c is called a real-space form. A Riemannian manifold with constant

sectional curvature c is said to be elliptic, hyperbolic or flat according as c > 0,

c < 0 or c = 0.

Similarly, we can define constant holomorphic sectional curvature in the

complex manifold. A Kähler manifold Mn is of constant holomorphic sectional

curvature c if and only if

R(X,Y )Z =
c

4
{g(X,Z)Y − g(Y,Z)X + g(F (X), Z)F (Y )

−g(F (Y ), Z)F (X) + 2g(F (X), Y )F (Z)},
for all X,Y, Z ∈ χ(M). Then the complex manifold with constant holomorphic

sectional curvature c is called a complex-space form.

A (2n+1)-dimensional smooth manifold M with an almost contact structure

(φ, ξ, η, g) satisfies the following conditions [5]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ), (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2.3)

P. Alegre, D. E. Blair and A. Carriazo introduced the concept of general-

ized Sasakian space form in [1]. An almost contact metric manifold M with

an almost contact metric structure (φ, ξ, η, g) is called a generalized Sasakian

space form if there exist three functions f1, f2, f3 on M such that the curvature

tensor R is given by

R(X,Y )Z = f1

{
g(Y,Z)X − g(X,Z)Y

}
+ f2

{
g(X,φZ)φY − g(Y, φZ)φX

+2g(X,φY )φZ
}

+f3

{
g(X,Z)η(Y )ξ−g(Y,Z)η(X)ξ+η(X)η(Z)Y−η(Y )η(Z)X

}
.

(2.4)

for all vector fields X,Y, Z on M .

If f1 = c+3
4 , f2 = f3 = c−1

4 then M is a Sasakian space form.

If f1 = c−3
4 , f2 = f3 = c+1

4 then M is a Kenmotsu space form.

If f1 = f2 = f3 = c
4 then M is a cosymplectic space form.
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In a (2n+ 1)-dimensional generalized Sasakian space form M (2n+1)(f1, f2, f3),

we have the following relations [1]

∇Xξ = (f3 − f1)φX, (2.5)

(∇Xφ)(Y ) = (f1 − f3)[g(X,Y )ξ − η(Y )X], (2.6)

(∇Xη)(Y ) = g(∇Xξ, Y ) = (f3 − f1)g(φX, Y ), (2.7)

R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ], (2.8)

η(R(X,Y )Z) = (f1 − f3)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.9)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ, (2.10)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ), (2.11)

Qξ = 2n(f1 − f3)ξ, (2.12)

S(X, ξ) = 2n(f1 − f3)η(X), (2.13)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3, (2.14)

3. Quarter-Symmetric Metric connection

In 1924, the notion of a semi-symmetric linear connection on a differentiable

manifold was introduced by Friedmann and Schouten [13]. The definition of

metric connection with torsion on a Riemannian manifold, was provided by

Hayden (1932) in [16]. In 1970, K. Yano [21] considered a semi-symmetric

metric connection and studied some of its properties. Then in 1975, Golab

[14] introduced the definition of a quarter-symmetric linear connection on a

differentiable manifold, which is a generalization of semi-symmetric connection.

A linear connection ∇̃ on a Riemannian manifold (M, g) is said to be a quarter-

symmetric connection if its torsion tensor T with respect to the connection ∇̃
defined by

T (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ],

satisfies

T (X,Y ) = η(Y )φX − η(X)φY, (3.1)

where η is a 1-form and φ is a (1, 1) tensor field.

A quarter-symmetric connection ∇̃ is called a quarter-symmetric metric con-

nection if ∇̃g = 0. Let (M, g) be a contact metric manifold with the Levi-Civita

connection ∇ and a linear connection ∇̃ such that

∇̃XY = ∇XY +G(X,Y ), (3.2)

where G(X,Y ) is a (1, 1)-type tensor. For ∇̃ to be a quarter-symmetric metric

connection on M , we get

G(X,Y ) =
1

2
[T (X,Y ) + T ′(X,Y ) + T ′(Y,X)], (3.3)
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where

g(T ′(X,Y ), Z) = g(T (Z,X), Y ). (3.4)

From the equations (3.1) we have

T ′(X,Y ) = g(φY,X)ξ − η(X)φY, (3.5)

and using the equations (3.1) and (3.5) we derive

G(X,Y ) = −η(X)φY. (3.6)

Hence a quarter-symmetric connection ∇̃ on a generalized Sasakian space form

can be written as

∇̃XY = ∇XY − η(X)φY. (3.7)

Further, a relation between the curvature tensors R and R̃ of type (1,3) of the

connections ∇ and ∇̃, respectively is given by ,

R̃(X,Y )Z = R(X,Y )Z + 2(f3 − f1)g(X,φY )φZ

+ (f1 − f3)[η(X)g(Y, Z)ξ − η(Y )g(X,Z)ξ]

+ (f1 − f3)η(Z)(η(Y )X − η(X)Y ). (3.8)

In the view of (3.8) we get

S̃(Y,Z) = S(Y,Z)− (f1 − f3)(g(Y, Z)− (2n+ 1)η(Y )η(Z)), (3.9)

where S̃ and S are Ricci tensors with respect to quarter-symmetric metric

connection ∇̃ and the Levi-Civita connection ∇, respectively on M2n+1. On a

generalized Sasakian space form, the Ricci tensor of quarter-symmetric metric

connection is symmetric.

From above, we have

r̃ = r, (3.10)

where r̃ and r are scalar curvature of M with respect to quarter-symmetric

metric connection ∇̃ and the Levi-Civita connection ∇, respectively.

4. h-Almost Conformal Ricci-Bourguignon Soliton on a Generalized

Sasakian Space Form with Quarter-Symmetric Metric Connection

In this section, we will study h-almost conformal Ricci-Bourguignon soliton

on a generalized Sasakian space form with quarter-symmetric metric connec-

tion and will establish some theorems about it.



132 Sampa Pahan

Theorem 4.1. If V is point-wise collinear with ξ on a generalized Sasakian

space form M2n+1(f1, f2, f3) with quarter-symmetric metric connection satis-

fying h-conformal Ricci-Bourguignon soliton (g, V, h, µ,Λ), h being a constant,

then soliton is shrinking, steady or expanding if

rΛ S 4n(f1 − f3) +
1

2
(p+

1

2
),

respectively.

Proof. First we consider that in a (2n + 1)-dimensional generalized Sasakian

space-form M2n+1(f1, f2, f3) with quarter-symmetric metric connection satis-

fying h-almost conformal Ricci-Bourguignon soliton (g, V, h, µ,Λ) provides

S̃(X,Y ) +
h

2
(£̃V g)(X,Y ) = (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ). (4.1)

Using (3.7), (3.9) and (3.10) we obtain

S(X,Y ) − (f1 − f3)(g(X,Y )− (2n+ 1)η(X)η(Y ))

+
h

2
(g(∇XV, Y ) + g(∇Y V,X)− η(X)g(Y, φV )− η(Y )g(X,φV ))

= (µ− 1

2
(p+

1

2
) + rΛ)g(X,Y ). (4.2)

Since, V is point-wise collinear with ξ i.e. V = bξ, where b is a function, from

the above it can be written as

S(X,Y ) − (f1 − f3)(g(X,Y )− (2n+ 1)η(X)η(Y ))

+
h

2
(bg(∇Xξ, Y ) + bg(∇Y ξ,X) + (Xb)η(Y ) + (Y b)η(X))

= (µ− 1

2
(p+

1

2
) + rΛ)g(X,Y ). (4.3)

Putting Y = ξ in the equation (4.3) we get

4n(f1 − f3)η(X) +
h

2
((Xb) + (ξb)η(X))

= (µ− 1

2
(p+

1

2
) + rΛ)η(X). (4.4)

Replacing X by ξ in the above equation we deduce that

4n(f1 − f3) + h(ξb) = µ− 1

2
(p+

1

2
) + rΛ. (4.5)

Putting the value of ξb in the equation (4.4) we derive

4n(f1 − f3)η(X) + h(Xb) = [(µ− 1

2
(p+

1

2
) + rΛ)]η(X). (4.6)

Taking exterior differentiation to (4.6) we get

[4n(f1 − f3)− (µ− 1

2
(p+

1

2
) + rΛ)]dη = 0. (4.7)



h-Almost conformal Ricci-Bourguignon soliton on GSSF w.r.t. QSMC 133

Since dη 6= 0 we get

µ = 4n(f1 − f3) +
1

2
(p+

1

2
)− rΛ. (4.8)

So, from the equation (4.8) we have

(db)(X) = 0⇒ b = constant. (4.9)

Hence, the Ricci soliton is shrinking, expanding or steady if rΛ < 4n(f1 −
f3) + 1

2 (p + 1
2 ), rΛ > 4n(f1 − f3) + 1

2 (p + 1
2 ), or rΛ = 4n(f1 − f3) + 1

2 (p + 1
2 )

respectively. �

Definition 4.2. A vector field V on a (pseudo) Riemannian manifold M is

called a conformal vector field [9] if

£ξg = 2ρg, (4.10)

for a smooth function ρ ∈ C∞(M).

On the other hand, a vector field τ on a semi-Riemannian manifold is called

torse-forming if it satisfies

∇Xτ = %X + υ(X)τ, (4.11)

for any X ∈ χ(M) with a smooth function % and υ is a 1-form.

(i) The vector field is called concircular if υ vanishes identically.

(ii) The vector field is called concurrent if υ vanishes identically and % = 1.

(iii) The vector field is called recurrent if % = 0.

(iv) The vector field is called parallel if υ vanishes identically and % = 0.

On a Riemannian or pseudo-Riemannian manifold, a nowhere zero vector field

τ is called a torqued vector field if it satisfies [8]

∇Xτ = %X + υ(X)τ, υ(τ) = 0. (4.12)

The function % is called the torqued function and the 1-form υ is called the

torqued form of τ .

Theorem 4.3. Let M2n+1(f1, f2, f3) a generalized Sasakian space form with

the quarter-symmetric metric connection endowing the h-almost conformal Ricci-

Bourguignon soliton (g, V, h, µ,Λ) where V is conformal vector field, then soli-

ton is shrinking, steady or expanding if

rΛ S 4n(f1 − f3) + hρ+
1

2
(p+

1

2
),

respectively.
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Proof. Let us consider that a (2n+1)-dimensional generalized Sasakian space-

form M2n+1(f1, f2, f3) with quarter-symmetric metric connection endows h-

almost conformal Ricci-Bourguignon soliton (g, V, h, µ,Λ) then we can write

S̃(X,Y ) +
h

2
(£̃V g)(X,Y ) = (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ). (4.13)

Using (3.7), (3.9) and (3.10) and (4.10) we obtain

S(X,Y ) − (f1 − f3)(g(X,Y )− (2n+ 1)η(X)η(Y ))

+
h

2
2ρg(X,Y )− h

2
η(X)g(Y, φV )− h

2
η(Y )g(X,φV ))

= (µ− 1

2
(p+

1

2
) + rΛ)g(X,Y ). (4.14)

Replacing Y with ξ, we have

4n(f1 − f3)η(X) + hρη(X) = (µ− 1

2
(p+

1

2
) + rΛ + β)η(X). (4.15)

Since η(X) 6= 0 we get

µ = 4n(f1 − f3) + hρ+
1

2
(p+

1

2
)− rΛ. (4.16)

Hence this completes the proof. �

Theorem 4.4. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form with

the quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is torse-forming vector field, then

(i) the soliton is shrinking if p > 2r(Λ− 1
2n+1 )− 2h(%+ 1

2n+1υ(τ))− 1
2 ,

(ii) the soliton is expanding if p < 2r(Λ− 1
2n+1 )− 2h(%+ 1

2n+1υ(τ))− 1
2 ,

(iii) the soliton is steady if p = 2r(Λ− 1
2n+1 )− 2h(%+ 1

2n+1υ(τ))− 1
2 .

Proof. We assume that a (2n+1)-dimensional generalized Sasakian space-form

M2n+1(f1, f2, f3) with quarter-symmetric metric connection admits h-almost

conformal Ricci-Bourguignon soliton (g, τ, h, µ,Λ) then we obtain

S̃(X,Y ) +
h

2
(£̃τg)(X,Y ) = (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ). (4.17)

Using the equation (4.11) the above identity can be noted as

S̃(X,Y ) +
h

2
[g(%X, Y ) + υ(X)g(τ, Y )− η(X)g(φτ, Y ))

+ g(X, %Y ) + υ(Y )g(τ,X)− η(Y )g(φτ,X))]

= (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ). (4.18)
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Using (3.9), (3.10) and (4.18) we obtain

S(X,Y ) − (f1 − f3)[g(X,Y )− (2n+ 1)η(X)η(Y )]

+
h

2
[g(%X, Y ) + υ(X)g(τ, Y )− η(X)g(φτ, Y ))

+ g(X, %Y ) + υ(Y )g(τ,X)− η(Y )g(φτ,X))]

= (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ). (4.19)

Contracting X = Y = ei 1 ≤ i ≤ (2n+ 1) we achieve

µ = r(
1

2n+ 1
− Λ) +

h

2n+ 1
[%(2n+ 1) + υ(τ)] +

1

2
(p+

1

2
). (4.20)

Hence this proof is completed. �

Corollary 4.5. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is concircular vector field, then the

soliton is shrinking, expanding or steady if p > 2r(Λ − 1
2n+1 ) − 2h% − 1

2 , p <

2r(Λ− 1
2n+1 )− 2h%+− 1

2 , or p = 2r(Λ− 1
2n+1 )− 2h%− 1

2 , respectively.

Corollary 4.6. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is concurrent vector field, then the

soliton is shrinking, expanding or steady if p > 2r(Λ − 1
2n+1 ) − 2h − 1

2 , p <

2r(Λ− 1
2n+1 )− 2h− 1

2 , or p = 2r(Λ− 1
2n+1 )− 2h− 1

2 , respectively.

Corollary 4.7. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is recurrent vector field, then soliton

is shrinking, expanding or steady if p > 2r(Λ − 1
2n+1 ) − 1

2n+12hυ(τ) − 1
2 , p <

2r(Λ − 1
2n+1 ) − 1

2n+12hυ(τ) − 1
2 , or p = 2r(Λ − 1

2n+1 ) − 1
2n+12hυ(τ) − 1

2 ,

respectively.

Corollary 4.8. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is torqued vector field, then the soli-

ton is shrinking, expanding or steady if p > 2r(Λ − 1
2n+1 ) − 2h − 1

2 , p <

2r(Λ− 1
2n+1 )− 2h− 1

2 , or p = 2r(Λ− 1
2n+1 )− 2h− 1

2 , respectively.

Corollary 4.9. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection endowing h-almost conformal Ricci-

Bourguignon soliton (g, τ, h, µ,Λ) where τ is parallel vector field, then the soli-

ton is shrinking, expanding or steady if p > 2r(Λ − 1
2n+1 ) − 1

2 , p < 2r(Λ −
1

2n+1 )− 1
2 , or p = 2r(Λ− 1

2n+1 )− 1
2 , respectively.



136 Sampa Pahan

Theorem 4.10. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form

with quarter-symmetric metric connection satisfying gradient h-conformal Ricci-

Bourguignon soliton where f1, f2, f3 and h are constants then M becomes an

Einstein manifold.

Proof. Let M2n+1(f1, f2, f3) a generalized Sasakian space form with quarter-

symmetric metric connection satisfying gradient h-conformal Ricci-Bourguignon

soliton. Then the equation (1.6) can be represented as

∇̃XDf =
1

h
[(µ− 1

2
(p+

1

2
) + r̃Λ)X − Q̃X]. (4.21)

Covariant derivative of (4.21) along Y gives

∇̃Y ∇̃XDf =
1

h
[(µ− 1

2
(p+

1

2
) + r̃Λ)∇̃YX

− ∇̃Y Q̃X] (4.22)

Interchanging X and Y and making the view of the above equation in the

relation R̃(X,Y )Df = ∇̃X∇̃YDf − ∇̃Y ∇̃XDf − ∇̃[X,Y ]Df we infer

hR̃(X,Y )Df = (∇̃Y Q̃)(X)− (∇̃XQ̃)(Y ) + Λ(Xr̃)Y − Λ(Y r̃)X (4.23)

Also from the equation (3.9) we have

Q̃Y = ((2n− 1)f1 + 3f2)Y − (3f2 − (2n+ 1)f1 + 4nf3)η(Y )ξ (4.24)

Using the equations (2.5), (2.7), (3.7) and (4.24) we can represent as

(∇̃XQ̃)Y = −(3f2 − (2n+ 1)f1 + 4nf3)(f3 − f1)g(φX, Y )ξ

− ((2n− 1)f1 + 3f2)η(X)φY + 4n(f3 − f1)η(Y )φX. (4.25)

Also we have

(∇̃Y Q̃)X = −(3f2 − (2n+ 1)f1 + 4nf3)(f3 − f1)g(φY,X)ξ

− ((2n− 1)f1 + 3f2)η(Y )φX + 4n(f3 − f1)η(X)φY. (4.26)

Taking inner product with W in the equation (4.23) and putting X = W = ei,

1 ≤ i ≤ (2n+ 1) and also using the equations (4.25) and (4.26) we obtain

hS̃(Y,Df) = −2n(Y r̃). (4.27)

Also r̃ = r and f1, f2, f3 being constants we get

hS̃(Y,Df) = 0. (4.28)

From the equation (3.9) we derive

S(Y,Df) = (f1 − f3)[(Y f)− (2n+ 1)η(Y )(ξf) (4.29)

Replacing Y by ξ and using the equation (4.29) we can write

ξf = 0 (4.30)
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Again in view of (4.23) it can be represented as

hg(R̃(X,Y )ξ,Df) = 2(f1 − f3)(3f2 − (2n+ 1)f1 + 4nf3)g(φX, Y ). (4.31)

Using the equation (2.8), (3.8) and (4.31) we obtain

2h(f1 − f3)(η(Y )(Xf) − η(X)(Y f)) = 2(f1 − f3)(3f2

− (2n+ 1)f1 + 4nf3)g(φX, Y ). (4.32)

Taking X = ξ the above equation becomes Y f = 0 which implies f is a

constant. The equation (4.21) gives that M is an Einstein manifold. �

Definition 4.11. [19] Let M be a (2n+1)-dimensional be a generalized Sasakian

space form with quarter-symmetric metric connection. The pseudo-projective

curvature tensor of M is given by

P?(X,Y )Z = a0R(X,Y )Z + a1[S(Y, Z)X − S(X,Z)Y ]

− r

4
(
a0
3

+ a1)[g(Y,Z)X − g(X,Z)Y ]. (4.33)

for all vector fields X,Y, Z and a0, a1 being constants.

Definition 4.12. A generalized Sasakian space form is said to be φ-pseudo-

projectivly flat with respect to quarter-symmetric metric connection if

φ2(P?(φX, φY )φZ)) = 0. (4.34)

Theorem 4.13. Let M (2n+1) be a φ− pseudo-projectively flat generalized Sasakian

space form with respect to quarter-symmetric metric connection endowing h-

almost conformal Ricci-Bourguignon soliton (g, ξ, h, µ,Λ), then soliton is shrink-

ing steady or expanding if

p T 2(f3 − f1) + 2
r

[
Λ + 2n+ 1(

a0
2na1

+ 1)]

+
4a0

a1(2n− 1)
((n+ 1)f2 + f3 − f1) +

1

2
(p+

1

2
)− 1

2
,

respectively.

Proof. Let M (2n+1) be a φ-pseudo-projectivly flat generalized Sasakian space

form with respect to quarter-symmetric metric connection. It is easy to see

that φ2(P?(φX, φY )φZ)) = 0 holds iff

g(P̃?(φX, φY )φZ, φV )) = 0,∀X,Y, Z, V ∈ χ(M2n+1). (4.35)

Therefore, we obtain
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g(P̃?(φX, φY )φZ, φV )) = a0g(R̃(φX, φY )φZ, φV ))

+ a1(S̃(φY, φZ)g(φX, φV )− S̃(φX, φZ)g(φY, φV ))

− 1

2n+ 1
(
a0
2n

+ a1)r̃(g(φX, φV )g(φY, φZ)

− g(φY, φV )g(φX, φZ)). (4.36)

Using the equation (4.37) in the equation (4.36), we can write

a0g(R̃(φX, φY )φZ, φV )) = a1(S̃(φX, φZ)g(φY, φV )− S̃(φY, φZ)g(φX, φV ))

+
1

2n+ 1
(
a0
2n

+ a1)r̃(g(φX, φV )g(φY, φZ)

− g(φY, φV )g(φX, φZ)). (4.37)

Let {e1, e2, ...e2n, e2n+1 = ξ} be a local orthonormal basis of vector fields in

M2n+1. Then {φe1, φe2, ...φe2n, ξ} is also a local orthonormal basis of vector

fields in M2n+1. Putting X = W = ei in the equation (4.38) and taking sum-

mation over i, 1 ≤ i ≤ 2n+ 1, we have

a0

2n+1∑
i=1

g(R̃(φei, φY )φZ, φei)) = a1

2n+1∑
i=1

(S̃(φei, φZ)g(φY, φei)

− S̃(φY, φZ)g(φei, φei))

+

2n+1∑
i=1

1

2n+ 1
(
a0
2n

+ a1)r̃(g(φei, φei)g(φY, φZ)

− g(φY, φei)g(φei, φZ)). (4.38)

Also,

2n+1∑
i=1

g(R̃(φei, Y )Z, φei)) = 2((n+ 1)f2 + f3 − f1)g(φY, φZ), (4.39)

2n+1∑
i=1

S̃(φei, Z)g(Y, φei) = S(φY, φZ)− (f1 − f3)g(φY, φZ), (4.40)

2n+1∑
i=1

g(φei, φei) = 2n, (4.41)

2n+1∑
i=1

g(φei, Z)g(Y, φei) = g(Y, Z), (4.42)

2n+1∑
i=1

g(φei, ei) = 0. (4.43)
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Therefore, using the equations (4.39)-(4.44) in the equation (4.38) we derive

2a0((n+ 1)f2 + f3 − f1)g(φY, φZ) = −(2n− 1)a1

(
S̃(φY, φZ)

−(f1 − f3)g(φY, φZ)
)

+
1

2n+ 1
(
a0
2n

+ a1)r(2n− 1)g(φY, φZ). (4.44)

Then, from the equation (1.5) it can be represented as

S(φY, φZ) = (µ− 1

2
(p+

1

2
) + rΛ)g(φY, φZ). (4.45)

Hence from the equations (4.45) and (4.46) we can write

2a0((n+ 1)f2 + f3 − f1)g(φY, φZ) = −(2n− 1)a1((µ− 1

2
(p+

1

2
)

+ rΛ)g(φY, φZ)− (f1 − f3)g(φY, φZ))

+
1

2n+ 1
(
a0
2n

+ a1)r(2n− 1)g(φY, φZ). (4.46)

Therefore, we get

µ = (f1 − f3) +
r

2n+ 1
(
a0

2na1
+ 1)

− 2a0
a1(2n− 1)

((n+ 1)f2 + f3 − f1) +
1

2
(p+

1

2
)− rΛ. (4.47)

Hence this completes the proof. �

5. h-Almost Conformal η-Ricci-Bourguignon Soliton on a General-

ized Sasakian Space Form with Quarter-Symmetric Metric Con-

nection

Theorem 5.1. Let M2n+1(f1, f2, f3) a generalized Sasakian space form with

quarter-symmetric metric connection satisfying h-almost conformal η-Ricci-

Bourguignon soliton (g, ξ, h, µ,Λ, β), then µ and β are related by

µ+ β =
1

2
(p+

1

2
) + (2n(2n+ 1)Λ + 2n)f1 + (6nΛ)f2 − (4nΛ + 4n)f3.

Proof. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form with the

quarter-symmetric metric connection satisfying h- almost conformal η-Ricci-

Bourguignon soliton (g, ξ, h, µ,Λ, β). Then we can write the equation (1.7)

as

S̃(X,Y ) +
h

2
(£̃V g)(X,Y ) = (µ− 1

2
(p+

1

2
) + r̃Λ)g(X,Y ) + βη(X)η(Y ). (5.1)

Using (3.7), (3.9) and (3.10) we have

S(X,Y ) − (f1 − f3)(g(X,Y )− (2n+ 1)η(X)η(Y ))

= (µ− 1

2
(p+

1

2
) + rΛ)g(X,Y ) + βη(X)η(Y ). (5.2)
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Putting Y = ξ in the equation (5.2) we obtain

4n(f1 − f3)η(X) = (µ− 1

2
(p+

1

2
) + rΛ + β)η(X). (5.3)

Since η(X) 6= 0 we get

µ+ β =
1

2
(p+

1

2
) + (2n(2n+ 1)Λ + 2n)f1 + (6nΛ)f2 − (4nΛ + 4n)f3. (5.4)

Hence, the theorem is proved. �

We have

S(X,Y ) − (f1 − f3)(g(X,Y )− (2n+ 1)η(X)η(Y ))

+
h

2
[g(∇Xξ, Y ) + g(∇Y ξ,X)]

= (µ− 1

2
(p+

1

2
) + rΛ)g(X,Y ) + βη(X)η(Y ). (5.5)

Contracting X = Y = ei 1 ≤ i ≤ (2n+ 1) we obtain

r +
h

2
divξ = (µ− 1

2
(p+

1

2
) + rΛ)(2n+ 1) + β, (5.6)

where divV is the divergence of the vector field ξ. If ξ = gradf where gradf is

the gradient of the smooth function f , we get

∆f =
2

h
(µ− 1

2
(p+

1

2
) + rΛ)(2n+ 1) +

2β

h
− 2r

h
. (5.7)

Hence, we have the following.

Theorem 5.2. Let M2n+1(f1, f2, f3) be a generalized Sasakian space form with

quarter-symmetric metric connection satisfying h-almost conformal η-Ricci-

Bourguignon soliton (g, ξ, h, µ,Λ, β). If ξ = gradf , for a smooth function f

then the Laplacian equation satisfied by f becomes

∆f =
2

h
(µ− 1

2
(p+

1

2
) + rΛ)(2n+ 1) +

2β

h
− 2r

h
.

Definition 5.3. A Riemannian manifold (M2n+1, g) is called φ−generalized

recurrent [3], if its curvature tensor R satisfies the condition

φ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )[g(Y, Z)X − g(X,Z)Y ],

where A and B are two 1-forms, B is non zero and these are defined by

g(W,ρ1) = A(W ) and g(W,ρ2) = B(W ), ∀W ∈ χ(M). ρ1 and ρ2 being the

vector fields associated to the 1-forms A and B respectively.

Theorem 5.4. There does not exist an extended generalized φ-recurrent gener-

alized Sasakian space form with quarter-symmetric metric connection satisfying

h-almost conformal η-Ricci-Bourguignon soliton (g, ξ, h, µ,Λ, β).
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Proof. Let us assume an extended generalized φ- recurrent generalized Sasakian

space form with quarter-symmetric metric connection endowing h-almost con-

formal η-Ricci-Bourguignon soliton (g, ξ, h, µ,Λ, β). Then we have

φ2((∇̃W R̃)(X,Y )Z) = A(W )φ2(R̃(X,Y )Z)+B(W )φ2([g(Y,Z)X−g(X,Z)Y ]).

From above we get

− (∇̃W R̃)(X,Y )Z + η((∇̃W R̃)(X,Y )Z)ξ (5.8)

= A(W )[−R̃(X,Y )Z + η(R̃(X,Y )Z)ξ] +B(W )[−g(Y,Z)X + g(X,Z)Y

+g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ].

From the equations (2.5), (3.7), (2.7) and (3.8) and then taking inner product

with U we have

−g((∇WR)(X,Y )Z,U) − 2(f3 − f1)g(X, (∇Wφ)Y )g(φZ,U)

− 2(f3 − f1)g(X,φY )g((∇Wφ)Z,U)

− (f1 − f3)(∇W η)(X)g(Y,Z)η(U)

− (f1 − f3)η(X)g(∇W ξ, U)g(Y,Z)

+ (f1 − f3)η(Y )g(∇W ξ, U)g(X,Z)

+ (f1 − f3)(∇W η)(X)g(Y, U)η(Z)

− (f1 − f3)(∇W η)(Y )g(X,U)η(Z)

− (f1 − f3)(∇W η)(Z)[η(Y )g(X,U)− η(X)g(Y,U)]

+ η((∇WR)(X,Y )Z)η(U)

+ 2(f3 − f1)η((∇Wφ)Z)η(U)g(X,φY )

+ (f1 − f3)(∇W η)(X)g(Y, Z)η(U)

+ (f1 − f3)η(∇W ξ)g(Y,Z)η(X)η(U)

− (f1 − f3)g(X,Z)η(Y )η(∇W ξ)η(U)

− (f1 − f3)(∇W η)(X)η(Y )η(Z)η(U)

+ (f1 − f3)(∇W η)(Y )η(X)η(Z)η(U)

= A(W )[−g(R(X,Y )Z,U)− 2(f3 − f1)g(X,φY )g(φZ,U)

− (f1 − f3)(g(Y,Z)η(X)η(U)− g(X,Z)η(Y )η(U))

− (f1 − f3)η(Z)(g(X,U)η(Y )− η(X)g(Y, U))

+ η(R(X,Y )Z)η(U)

+ (f1 − f3)η(U)(η(X)g(Y,Z)− η(Y )g(X,Z))]

+ B(W )[−g(Y,Z)g(X,U) + g(X,Z)g(Y,U)

+ g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U)]. (5.9)
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Let {e1, e2, ..., e2n+1 = ξ} be an orthonormal basis for the tangent space of

M2n+1 at a point p ∈ M2n+1. Putting X = U = ei in (5.9) and taking

summation over i, we get

−(∇WS)(Y, Z) − 2(f3 − f1)g(φZ, (∇Wφ)Y )

+ (f1 − f3)η(Y )g(∇W ξ, Z)

+ (f1 − f3)(∇W η)(ei)g(Y, ei)η(Z)

− (2n+ 1)(f1 − f3)(∇W η)(Y )η(Z)

− 2n(f1 − f3)(∇W η)(Z)η(Y )

+ η((∇WR)(ei, Y )Z)η(ei)

= A(W )[−S(Y,Z)− 2(f3 − f1)g(φY, φZ)

− 2n(f1 − f3)(g(Y,Z)η(Y )η(Z)

+ η(R(ei, Y )Z)η(ei)]

+ B(W )[(1− 2n)g(Y, Z)− η(Y )η(Z)]. (5.10)

Using the equations (2.5), (2.6) and (2.7) we obtain

−(∇WS)(Y, Z) − 2(f3 − f1)2η(Y )g(φZ,W )− 2(f3 − f1)2η(Z)g(φY,W )

+ (f1 − f3)η(Z)g(φW, Y ) + (2n+ 1)(f1 − f3)2g(φW, Y )η(Z)

+ 2n(f1 − f3)2g(φW,Z)η(Y )

+ η((∇WR)(ei, Y )Z)η(ei)

= A(W )[−S(Y,Z)− 2(f3 − f1)g(φY, φZ)

− 2n(f1 − f3)(g(Y,Z)η(Y )η(Z) + η(R(ei, Y )Z)η(ei)]

− B(W )[(2n− 1)g(Y,Z) + η(Y )η(Z)]. (5.11)

Also from the equation (5.2) we have

S(ξ, ξ) = µ− 1

2
(p+

1

2
) + rΛ + β.

Again from (2.13) we can write

2n(f1 − f3) = µ− 1

2
(p+

1

2
) + rΛ + β.

Putting Y = Z = ξ in (5.11) and also using the equations (2.7), (2.9) and

(2.13) it can be represented by

(2n+ 2)B(W ) = 0.

As n 6= −1, Hence B(W ) = 0 which is not possible. Hence our assumption

is wrong. Therefore there does not exist an extended generalized φ-recurrent

generalized Sasakian space form with quarter-symmetric metric connection sat-

isfying h-almost conformal η-Ricci-Bourguignon soliton (g, ξ, h, µ,Λ, β). �
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Remark 5.5. The study of a h-almost conformal Ricci-Bourguignon soliton on

semi Riemannian manifolds and Riemannian manifolds deals a significant role

in the area of differential geometry and in special relativistic physics as well.

Ricci-Bourguignon provides the most meaningful topic in modern physics. Here

we have explored some important results of generalized Sasakian space form

with h-almost conformal Ricci-Bourguignon soliton and h-almost conformal η-

Ricci-Bourguignon soliton in terms of a quarter-symmetric metric connection.

The the novel concept of h-almost conformal Ricci-Bourguignon soliton and

h-almost conformal η-Ricci-Bourguignon soliton providesgeometric and phys-

ical applications with relativistic viscous fluid spacetime, admitting heat flux

and stress, dark and dust fluid general relativistic spacetime, and radiation era

in general relativistic spacetime. We will have more advantages to pursue the

geometric properties. There are some questions that arises from our article to

study in further research.

(i) Which of the results of our paper are also true for trans-Sasakian mani-

folds, Co-Kähler manifold, or in para-contact geometry ?

(ii) Is the theorem 4.10 true for assuming h, f1, f2, f3 as nonconstant functions

?

(iii) Does there exist an extended generalized φ-recurrent generalized Sasakian

space form with h-almost conformal η-Ricci-Bourguignon soliton without quarter-

symmetric metric connection ?

Acknowledgment: The author wish to express her sincere thanks and grat-

itude to the referee for valuable suggestions towards the improvement of the

paper.
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