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Abstract— Due to recent developments in communications and the increasing penetration rate of distributed generation (DGs), new
players in the energy market, known as prosumers, have emerged. Prosumers can both produce and consume power, offering benefits
such as on-site power consumption, peak shaving, and postponing the power transmission network investment costs. This paper presents
a two-stage day-ahead peer-to-peer pricing and power exchange model among local market participants, including the upstream grid,
consumers, prosumers (equipped with rooftop solar panels), and electric vehicles. In the first stage, initial pricing is determined using the
mid-market rate pricing method, taking into account each participant’s declared demand and the forecasted solar production of prosumers.
In the second stage, the random behavior of electric vehicles is modeled through scenario generation, and their dynamic behavior is
incorporated into the pricing scheme. The proposed model aims to minimize two objectives: trading costs and electrical power losses due
to the exchange of power among participants. This two-objective problem is reformulated as a single objective using the epsilon-constraint
method. The resulting MINLP model is solved in GAMS using the DICOPT solver, and the best-compromised solution is identified through
the Min-Max method. Simulation results indicate a 6.7% reduction in costs, with all participants benefiting economically. Additionally,
on-site interactions led to a decrease in congestion on two lines connecting to the upstream grid by 5.02% and 6.66%, respectively.
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NOMENCLATURE

Abbreviations
DG Distributed generation
ESS Energy storage system
EV Electric vehicle
GAMS General algebraic modeling system
IoT Internet of Thing
MG Microgrid
MINLP Mixed integer non-linear programing
P2P Peer to peer
PDF Probability distribution function
PER Renewable energy resource
PL Parking lot
SOC State of charge
ToU Time of use
Binary Variables
Uav(e, p, q) 1 If the line between bus p and q is in the path of

interaction of EV e with the upstream grid, otherwise 0
Uav(i, e, p, q) 1 If the line between bus p and q is in the path of

interaction prosumer i with EV e, otherwise 0
Uav(i, k, p, q) 1 If the line between bus p and q is in the path of

interaction prosumer i with consumer k, otherwise 0

Received: 02 Mar. 2024
Revised: 16 Jun. 2024
Accepted: 31 Aug. 2024
∗Corresponding author:
E-mail: mkkafaee@gmail.com (M. Kafaei)
DOI: 10.22098/joape.2024.14762.2130

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.
Copyright c© 2025 University of Mohaghegh Ardabili.

Uav(i, p, q) 1 If the line between bus p and q is in the path
of interaction of the prosumer i with the upstream grid,
otherwise 0

Uav(k, e, p, q) 1 If the line between bus p and q is in the path of
interaction consumer k with EV e, otherwise 0

Uav(k, p, q) 1 If the line between bus p and q is in the path
of interaction of the consumer k with the upstream grid,
otherwise 0

Uch(e,m, t) 1 if EV e in parking lot m at hour t is charged,
otherwise 0

Udch(e,m, t) 1 if EV e in parking lot m at hour t is discharged,
otherwise 0

Parameters
tdetention(e,m) Detention time of EV e in parking lot m (h)
Gi(t) Electrical power generation of prosumer i at hour t (kW)
GT (t) Total Electrical power generated by prosumers at hour t

(kW)
M i(t) Electrical power consumption of prosumer i at hour t

(kW)
Mk(t) Electrical power consumption of consumer k at hour t

(kW)
MT (t) Total Electrical power consumed by prosumers and

consumers at hour t (kW)
Pmaxch Maximum charging Electrical power of batteries of EVs

(kW)
Pmaxdch Maximum discharging Electrical power of batteries of

EVs (kW)
SocmaxEV Maximum SoC of EVs (kWh)
SocminEV Minimum SoC of EVs (kWh)
Socin(e,m) Arrival SoC of EV e in parking lot m (kWh)
Socout(e,m) Departure SoC of EV e in parking lot m (kWh)
ta(e,m) Arrival time of EV e in parking lot m (h)
td(e,m) Departure time of EV e in parking lot m (h)
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ηch, ηdch Charging and discharging efficiency of batteries of EVs
Set and Indices
e Index of EVs
i, j Indices of prosumers
k Index of consumers
m Index of parking lots
Nc Set of consumers
Np Set of prosumers
Nbus Set of buses
NEV Set of EVs
NPL Set of EV parking lots
p, q Indices of buses
T Set of times
t Index of time
Variables
Cbuy(t) Price of procurement electrical power from upstream grid

at hour t ($)
Cex(t) Price of P2P electrical power trade when local production

is greater than demand at hour t ($)
Cim(t) Price of P2P electrical power trade when local demand is

greater than production at hour t ($)
Cnew(t) Updated P2P energy trade price considering participation

of EVs in P2P market at hour t ($)
CP2P (t) Price of P2P trading electrical power with local market

at hour t ($)
CPP (t) Unified market of electrical power price in the P2P

market in different conditions at hour t ($)
Csell(t) Price of selling electrical power to upstream grid at hour

t ($)
P(Lp,q))(t) Electrical power flow of line connecting bus p and

bus q at hour t (kW)
Pch(e,m, t), Pdch(e,m, t) Charging and discharging electrical

power of EV e in parking lot m at hour t (kW)
PEVim (e,m, t), PEVex (e,m, t) Imported and exported electrical

power EV e in parking lot m traded by upstream
grid at hour t (kW)

P iim(t), P iex(t) Imported and exported electrical power prosumer
i traded by upstream grid at hour t (kW)

P kim(t) Electrical power imported to consumer k by upstream
grid at hour t (kW)

R(p, q) Resistance of line connecting bus p and bus q (ohm)
SocEV (e,m, t) State of charge of EV e in parking lot m at hour

t (kW)
Z Positive variable
P e→i (m, t) , P i→e (m, t) Electrical power traded among pro-

sumer i and EV e in parking lot m at hour t (kW)
P e→k(t) Electrical power sold to consumer k by parking lot e at

hour t (kW)
P i→k (t) Electrical power sold to consumer k by prosumer i at

hour t (kW)
P j→i(t), P i→j(t) Electrical power traded among prosumer i and

j at hour t (kW)

1. INTRODUCTION

Continuous power transmission expansion can increase costs,
complexity, and the size of network equipment. Conversely, DG
expansion schemes can delay the capital costs for transmission
build-up. These units have the potential to meet the demands
of consumers locally, resulting in reduced power congestion in
power transmission lines. A management system equipped with
communication links is required to coordinate numerous DGs.
The integration of communication infrastructures, DGs, and some
controllable participants like EVs leads to the concept of active
distribution networks. Communication and IoT developments have
enabled the creation of a peer-to-peer (P2P) local energy market
in conjunction with the active distribution network, so the power
grid is no longer the only medium of power exchange. Indeed,
the P2P energy market comprises two layers: physical and

virtual. The physical layer includes DGs and power, while the
virtual layer handles communications [1]. The market participants
are categorized into three groups: producers, consumers, and
prosumers. Prosumers can act as both producers and consumers
simultaneously. Examples include a household with rooftop solar
panels or an EV. When considering DGs, it is advantageous to take
into account each region’s natural and geographical capabilities.
However, a challenge is the limited space available for DG
installation, particularly because some RERs are not feasible on
a small household scale. Rooftop solar panels provide a viable
solution to this obstacle, as solar energy can be utilized in
infrastructures as small as a house [2]. By equipping a building
with a rooftop solar panel, the building transforms from a consumer
to a prosumer.

1.1. Motivation
The P2P energy market provides an online platform that enables

market players to trade energy directly at an agreed price. Those
without any production capacity could benefit from local electricity
produced by other participants. One of the most important issues is
setting a win-win price between ToU prices and feed-in tariffs. In
this manner, buyers would save on their costs, and sellers could earn
more profit. This could drive the market, attract more participants,
and increase the tendency for DG expansion [3]. Also, EV owners
could benefit from such a fair market because, considering their
battery capacity, they could interact bidirectionally with the market
and gain from both buying and selling power to other peers [4]. In
a P2P market consisting of various DGs, prosumers, and specially
EVs, Pricing is a challenging issue. The differences between
EVs and other sources create energy management and pricing
challenges. For example, the installed capacity of a rooftop solar
panel is determined. With the available forecasting facilities for
solar radiation, approximate day-ahead information about power
generation output would be possible. In this way, pricing is
determined with acceptable accuracy based on production and
consumption forecasts. However, the number of available EVs
and their preferences are more diverse. Regarding the existing
challenges, researchers paid less attention to pricing mechanisms
in the P2P market with the penetration of EVs [5, 6]. Authors in
Ref. [7] Considered P2P only amongst EV charging stations. There
are no more market players, and there is no longer any pricing
scheme. Indeed, the authors aimed to use the battery capacity of
EVs for ancillary services and reduce the charging cost of EVs,
which is desirable for owners. Thanks to IGDT, they controlled
the robustness parameter of uncertainty modeling of EVs. Ref. [8]
analyzes an industrial hub in conjunction with electric vehicles
and considers both heat and power peer to peer transactions.
Pricing remains static, and the dynamic behavior of participants,
particularly electric vehicles, is not taken into account. Ref. [9] has
set prices without considering EVs and ESSs and using the concept
of levelized cost of electricity (LCOE) and other constraints to
satisfy consumers and prosumers Ref. [10] focuses on developing
a smart contrast-based electronic wallet for automatic charging
payment of electric vehicles to foster a trust-based relationship and
a user-friendly application for EV owners. Ref. [11] investigates
the effect of EVs and shiftable loads on P2P energy trading.
Machine washings and dishwashings are considered flexible loads.
Also, the degradation cost of EV batteries is modeled. However,
the authors set a static price between the selling price and the
purchase price to promote the local consumption approach. Ref.
[12] deals with the issue of local and P2P energy exchange
between EVs. Their proposed model achieves demand response
by providing incentives to discharge EVs to balance the local
electricity demand out of their self-interest. An iterative double
auction mechanism is presented for charging and discharging EVs
to maximize social welfare. Ref. [13] proposes the transactive
energy in the presence of EVs, but the number of EVs and their
required power are predetermined. With such an assumption, EVs
behave like other ESSs reviewed in previous works.
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1.2. Literature review
Energy can be traded on a multi-apartment scale or even

between MGs on the P2P architecture. Refs. [14, 15] deal with
the energy trade between smart homes and apartments. Ref. [16]
focuses on buildings in the P2P market. In this regard, they not
only simulate precisely the performance of electric usage and
storage but also consider and model the thermal appliances. The
result shows that the operational cost of prosumers decreased by
around 3%. The P2P energy trade between MGs could be more
complex due to the connection between several energy sources and
their independent decisions. Refs. [17–19] deal with P2P power
exchange between several MGs and related issues. Game theory’s
capabilities in the P2P market are considered in some references.
In Ref. [20], a Cooperative Stackelberg game is formulated in
which the centralized power system acts as the leader that needs
to decide on a price at the peak demand period to incentivize
the prosumers not to seek any energy from it. The prosumers,
on the other hand, act as followers and respond to the leader’s
decision by forming suitable coalitions with neighboring prosumers
to participate in P2P energy trading to meet their energy demand.
In addition, Ref. [21], employing a motivational game-theoretic
approach, proposes how a motivational psychology framework can
be used effectively to design P2P energy trading to increase user
participation. Ref. [22] makes competition between sellers as well
as buyers to select a seller. Ref. [23] models the P2P market using
a multi-leader-multi-follower game. They examine three different
local communities and find that converting extra electric energy to
other forms of energy could be more beneficial than storing it. Ref.
[24] investigates the possibility of using retired EV second-life
batteries in the P2P market using the double-sided auction method.
The result indicates that the capital cost of these retired batteries
is lower, but the economic benefits of new ones in the community
market are better. The challenges of large loads as well as the
ancillary services in the P2P market are considered in references.
In Ref. [25], the authors manage the load of a large industrial unit
with a water supply plant in the P2P energy market. Case studies
on a water supply plant show that optimized load management
under this new market structure significantly reduces electricity
costs compared to the spot market. Ref. [26] proposes a coupling
market framework in which the P2P energy trading market can
participate in both energy and ancillary service markets. The
P2P energy trading market is modeled as an equivalent federated
power plant that provides ancillary services and energy for the
other market entities. Their proposed method could encourage DG
owners to participate spontaneously in the ancillary service market.
DGs would play a vital role in the P2P market, and due to the
random behavior of those driven by natural resources, the ESS is
considered in many studies to mitigate the inevitable uncertainties
[27]. Ref. [28] examines the individual installation of ESS in the
place of each prosumer or as an integrated unit. However, No
uncertainty is considered for power production or the price. Ref.
[29] optimizes the installation of ESSs and P2P energy exchange
in various case studies, including different configurations of ESSs
in MG. Ref. [30] investigates how residential ESS contributes to
local demand side flexibility in an integrated market setting. P2P
market consists of two layers; physical and virtual. The virtual
layer provides a secure network environment for all the peers to
have equal access to the P2P market [31]. As the trend moves
towards decentralization, it is essential to debate how to establish
trust and privacy in interconnected digital societies [32]. many
studies focuses on the virtual layer of P2P market instead of
physical layer and consider blockchain in their studies. Block
chain technology is an advanced database mechanism that allows
transparent information sharing within a business network. A
blockchain database stores data in blocks that are linked together
in a chain. Blockchain is a well-known network to handle peer to
peer interactions. Meanwhile, when it comes to the electricity P2P
market, its specific limitations would be a challenge [33]. Ref. [34]
tries to reduce transaction costs and enables micro-transactions in a

decentralized and democratic energy market. Leverage block chain
technology is used in Ref. [35]. Ref. [36] proposes IoT–blockchain
architecture utilizes a Chainlink oracle network and a private
Ethereum blockchain. Ref. [37] proposes a real-time system that
incorporates the concepts of prioritization an cryptocurrency to
incentivize EV users to be collectively charged by a renewable
energy-friendly schedule. The system implements a ranking scheme
by giving charging priority to users with a better renewable energy
usage history. With an increasing demand for climate resiliency,
water sensitivity, nature inclusiveness and energy efficiency in
dense urban environments, the call for layered and multifunctional
use of rooftops is rising [38]. In distribution networks, the lack
of space would be an obstacle for some kinds of integrated DGs.
Capabilities of rooftop solar panels considered in some researches.
Also, Decarbonizing the building sector is key to meet the EU
climate goals by 2050 [39]. Authors in Ref. [39] uses special
techniques to estimate the main spatial and temporal characteristics
of the rooftop PV energy production potential. It predicts major
improvement could be achieved in the EU’s rooftop solar energy
production by around 2040. Ref. [40] analyses a rooftop solar
panel system on a car parking area in Thailand. Ref. [41] surveys
assesses the potential for residential rooftop solar panel installation
across Qatar, considering different issues like space availability.
As a consequence of skyscrapers and the shade effects of tall
buildings, finding the best candidate places, would be crucial.
Ref. [42] use data envelopment analysis to evaluate suitable
candidates for rooftop solar panel installation. EVs bring both
opportunities and challenges to MGs [43, 44]. Studies consider
different aspects of EVs. Power quality concerns considered in
Ref. [45] and the location and capacity of charging stations
obtained to reduce voltage drop and total harmonic distortions. To
considering frequency regulation, Ref. [46] presents a new robust
load frequency controller for EV aggregators. Some references try
to meet the EV requirements by renewable natural resources; in
this manner, metaheuristic algorithms like genetic algorithms could
be helpful [47].

1.3. Contributions and organization
This paper presents a two-stage multi-objective probabilistic

approach for pricing and management of day-ahead electrical
power trades in the presence of EVs. In the first stage, regarding
the declared demand of each agent and forecasted solar production
of prosumers, initial pricing is determined using the mid-market
rate pricing method. In the second stage, by modeling the random
behavior of EVs, final pricing and electrical power exchanged
between participants are identified, considering EVs’ stochastic
charging and discharging mechanism. The First objective of the
proposed model is trading cost, while the second objective is
electrical power loss due to the electrical power exchange among
participants. The epsilon constraint method solves the proposed
model, and the Min-Max method derives the best-compromised
solution.

The main contributions of this paper are as follows:
• Presenting a two-stage pricing strategy considering EVs,
• Modeling the uncertainty of EV’s behavior using scenario

generation,
• Proposing electrical power loss as a supplementary objective

function along with trading cost,
• Converting the two-objective proposed method as a single

objective using Epsilon constraint method, and
• Presenting an optimal P2P energy market considering various

types of participants.
The rest of this paper is organized as follows: Section 2 presents

the problem formulation. Section 3 deals with the uncertainty
modeling of EVs. Section 4 states the solution algorithm. Section
5 describes the application of the mathematical algorithm to the
proposed model. Section 6 explains the case study and simulation
results. Finally, Section 7 presents the conclusions.



M. Kafaei et al.: A Two-Stage Multi-Objective Optimal Day-Ahead Peer to Peer Energy Trade and Pricing Considering Electric Vehicles in Microgrid 4

2. PROBLEM FORMULATION

This section discusses problem formulation, constraints, pricing
strategy, and objective functions. Fig. 1 provides an overview of
the P2P energy trading in a MG involving four types of agents:
the upstream grid, prosumers, EVs, and consumers. A P2P energy
market consists of two layers: physical and virtual. The physical
layer refers to the actual exchange of energy using standard wires
or advanced wireless technologies. The virtual layer is responsible
for creating a data and communication network to enable peers to
interact with each other and store the history of transactions. The
communication and power links between participants are shown
in Fig. 1. Moreover, double arrows between two participants
showcase their bidirectional power exchangeability compared to
those with simple arrows.
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Fig. 1. Overview of P2P energy market.

2.1. Problem constraints

A) Electrical power balance for prosumers
Fig. 1 shows four ways to supply prosumers: utilizing the unit’s

own generation capacity (solar panels), receiving electrical power
from other prosumers via P2P energy market, importing electrical
power from the upstream grid, and purchasing electrical power
from EV parking lots. The electrical power balance for each
prosumer is written as:

Gi(t) +
∑

j∈Np,j 6=i
P (j→i)(t) + P iim(t)+∑

m∈NPL

∑
e∈NEV

P (e→i)(m, t) =

M i(t) +
∑

j∈Np,j 6=i
P (i→j)(t) + P iex(t)+∑

m∈NPL

∑
e∈NEV

P (i→e)(m, t)+∑
k∈Nc

P (i→k)(t) ∀t ∈ T, ∀i ∈ NP

(1)

B) Electrical power balance for consumers
Compared to prosumers, consumers do not have the production

capacity and must meet their needs through prosumers, the
upstream grid, and EV parking lots as follows:

∑
i∈Np

P (i→k)(t) + P kim(t)+∑
m∈NPL

∑
e∈NEV

P (e→k)(m, t) =

Mk(t) ∀t ∈ T, ∀k ∈ Nc

(2)

C) Electrical power balance for EVs
The Electrical power required to charge EVs in parking lots is

provided by prosumers in the P2P energy market as well as the
upstream grid as follows:

∑
m∈NPL

∑
e∈NEV

Pch(e,m, t) =∑
m∈NPL

∑
e∈NEV

P EV
im (e,m, t)+∑

i∈Np

∑
m∈NPL

∑
e∈NEV

P i→e(m, t), ∀t ∈ T

(3)

On the other hand, the total power discharged by the EV parking
lots can be transferred directly to the prosumers or consumers via
the P2P energy market or sold to the upstream grid as:

∑
m∈NPL

∑
e∈NEV

Pdch(e,m, t) =∑
m∈NPL

∑
e∈NEV

P EV
ex (e,m, t)+∑

k∈Nc

∑
m∈NPL

∑
e∈NEV

P e→k(m, t)+∑
i∈Np

∑
m∈NPL

∑
e∈NEV

P e→i(m, t), ∀t ∈ T

(4)

The amount of charge and discharge of every EV in the parking
lot in each period is limited to the maximum charge and dis charge
capacity of their battery as follows [48]:

0 6 Pch(e,m, t) 6
Pmax

ch · Uch(e,m, t)

ηch
,

∀t ∈ T,∀e ∈ NEV, ∀m ∈ NPL

(5)

0 6 Pdch(e,m, t) 6 Pmax
dch · Udch(e,m, t) · ηdch,

∀t ∈ T, ∀e ∈ NEV, ∀m ∈ NPL
(6)

It is not possible to charge and discharge batteries of an EV at
the same time [48]. Thus:

Uch(e,m, t) + Udch(e,m, t) ≤ 1,
∀t ∈ T, ∀e ∈ NEV, ∀m ∈ NPL

(7)

When the EVs enter the parking lot, the battery charge level is
equal to its initial charge as Eq. (8), but in the following hours
and before leaving the parking lot, the electrical power changes
according to Eq. (9). Eq. (10) guarantees that EVs leave the
parking lot with maximum stored energy in their batteries [48].

SocEV(e,m, t) = Socin(e,m),
t = ta(e,m), ∀e ∈ NEV, ∀m ∈ NPL

(8)

SocEV(e,m, t) = Soc(e,m, t− 1)+

(Pch(e,m, t)× ηch)−
(
Pdch(e,m,t)

ηdch

)
,

∀t ∈ T,∀e ∈ NEV,∀m ∈ NPL

(9)

SocEV(e,m, t) = Socout(e,m),
t = td(e,m), ∀e ∈ NEV, ∀m ∈ NPL

(10)

During detention time in the parking lot, the amount of charge
or discharge of EVs should be such that the battery capacity does
not exceed the minimum and maximum capacity as follows [48]:

Socmin
EV ≤ SocEV(e,m, t) ≤ Socmax

EV ,
∀t ∈ T, ∀e ∈ NEV, ∀m ∈ NPL

(11)
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2.2. Pricing strategy
This subsection presents the formulation of power exchange

pricing in the local P2P market.
A) First stage

In the first stage, pricing is determined using mid-market rate
method, concerning the demand of each participant and solar
power generation without considering EVs. The mid-market rate
method [49] adjusts hourly prices based on the balance of supply
and demand. Indeed, at this stage, the dynamic behavior of EVs
is not considered, and only the declared demand and solar power
generation capacity are factored into pricing. When the demand
matches power production, the P2P energy price is assumed to be
the average of the purchase and sale prices with the upstream grid
as follows [49]:

CP2P(t) =
Csell(t) + Cbuy(t)

2
∀t ∈ T (12)

It is assumed that GT (t) is the total power output of prosumers
(solar cells) per hour as [49]:

GT (t) =
∑
i∈Np

Gi(t) ∀t ∈ T (13)

and MT (t) is the total power consumption of consumers and
prosumers per hour as [49]:

MT (t) =∑
i∈Np

M i(t) +
∑
j∈Nc

M j(t) ∀t ∈ T (14)

According to the total production of prosumers and the total
demand at each time, the purchase or sale price of electrical power
in the context of P2P energy trade is determined as [49]:

τ = 1/W, W is the motor weight (15)

B) Second stage
At this stage, by modeling EVs and their uncertainties, the

pricing issue is updated in accordance with the behavior of EVs,
and then, the energy exchange is done according to the set price.
EVs can coordinate their activities according to the hourly price
and the amount of supply and demand. With their activity and
depending on the process of charging or discharging, they cause
a change in the amount of energy consumed or produced. At this
stage, it is assumed that the initial price changes in the proportion
to the behavior of EVs. Obviously, the initial price should be
reduced by increasing the electrical power generation due to EV
discharging, and it should be increased by increasing the demand
due to the EV charging. Electrical power balance changes due to
the process of charging and discharging of EVs are calculated in
Eq. (16). Then, the price is updated in proportion to changes in
the balance of power consumption and production. Z is a positive
variable; therefore, the price changes align with the electrical
power change sign.

∆P (t) =
∑

m∈NPL

∑
e∈NEV

Pch(e,m, t)−∑
m∈NPL

∑
e∈NEV

Pdch(e,m, t) ∀t ∈ T (16)

Cnew(t) =
CPP(t)× (1 + Z ×∆P (t)) ∀t ∈ T (17)

To maintain financial incentives, the updated price due to the
changes in production and consumption should still be lower than
the electricity purchase tariff from the upstream grid. In other
words, EVs should not increase the demand by concentrating their

charge over an hour since this will result in the updated price
exceeding the purchase price of electricity from the upstream grid.
Hence, the financial incentive to participate in the P2P energy
market will disappear. This limitation is formulated as:

Cnew(t) ≤ Cbuy(t) ∀t ∈ T (18)

2.3. Objective functions
In this subsection, two objective functions are presented to

minimize the economic costs of the market as well as the cost
of electrical power loss. The purpose of presenting the second
objective function is to consider technical issues such as electrical
power losses in addition to economic costs for selecting the
appropriate partner for electrical power exchange.

A) Economic cost of the market
In this objective function, the goal is to minimize the total cost

of all participations in P2P energy market. Pricing and selection
of suitable pairs for P2P power exchange and also, the time
and amount of electrical power exchange with the upstream grid
are done in such a way that the cost of power supply for all
participants is minimized.

F1 =∑
t∈T

{( ∑
i∈Np

∑
j∈Np,j 6=i

P (i→j)(t) +
∑
i∈Np

∑
k∈Nc

P (i→k)(t) +
∑
i∈Np

∑
m∈NPL

∑
e∈NEV

P (i→e)(m, t)

)
·

Cnew(t)−

( ∑
j∈Np

∑
i∈Np,j 6=i

P (j→i)(t) +
∑

m∈NPL

∑
e∈NEV

∑
i∈Np

P (e→i)(m, t)

)
·

Cnew(t) +

( ∑
i∈Np

P iim(t) +
∑
k∈Nc

P kim(t) +
∑

m∈NPL

∑
e∈NEV

PEVim (e,m, t)

)
·

Cbuy(t)−

( ∑
i∈Np

P iex(t) +
∑

m∈NPL

∑
e∈NEV

PEVex (e,m, t)

)
· Csell(t)

(19)

B) Electrical power loss
In order to consider the electrical power losses in the agent’s

decision to select the corresponding partner for the P2P trade, an
objective function is defined in proportion to the resistance of the
lines, which connect agents to each other. For this purpose, the
total electrical power of every line between buses is calculated and
multiplied by the resistance of that line as:

PL(p,q)
(t) =∑

i∈Np

[
(P iim(t) + P iex(t)) · Uav(i, p, q)

]
+∑

k∈Nc

[
P kim(t) · Uav(k, p, q)

]
+( ∑

m∈NPL

∑
e∈NEV

PEVim (e,m, t) +
∑

m∈NPL

∑
e∈NEV

PEVex (e,m, t)

)
·

Uav(e, p, q) +
∑

j∈Np,j 6=i

∑
j∈Np

[
P (i→j)(t) · Uav(i, j, p, q)

]
+∑

i∈Np

∑
k∈Nc

[
P (i→k)(t) · Uav(i, k, p, q)

]
+∑

m∈NPL

∑
e∈NPL

∑
i∈Np

[
P (e→i)(m, t) · Uav(e, i, p, q)

]
+∑

m∈NPL

∑
e∈NPL

∑
k∈Nc

[
P (e→k)(m, t) · Uav(e, k, p, q)

]
∀t ∈ T

(20)

F2 =∑
t∈T

∑
p∈Nbus,p 6=q

∑
q∈Nbus

[
PL(p,q)

(t)×R(p, q)
]

(21)

3. UNCERTAINTY MODELLING OF EVS

The arriving time of EVs in the parking lot is shown by Fig.
2 [43]. The departure time of EVs is obtained by adding the
detention time of EVs in the parking lot to their arrival time.
Detention time of EVs is modeled using normal PDF with mean
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time of 10 hours and standard deviation of 0.924 as shown by Fig.
3 [43].

td(e,m) =
ta(e,m) + tdetention(e,m), ∀e ∈ NEV, ∀m ∈ NPL

(22)
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The SoC of EVs entering the parking lot is modeled using
normal PDF with mean and variance of 45 and 15, respectively as
illustrated in Fig. 4.
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 In multi-objective optimization, several objective functions must be optimized simultaneously. The general form 

of a multi-objective optimization problem is as follows [44]:  
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here g(x) and h(x) are the set of inequality and inequality constraints, respectively. In these problems, due to 

the existence of a set of functions with conflicting goals, instead of a specific solution, a set of solutions is obtained 

called Pareto front solutions. Pareto optimal solution is the optimal solution that cannot be improved in one of the 

objective functions unless the performance of the solution in at least one of the rest objective functions is 

deteriorated. The Epsilon constraint method is based on converting a multi-objective optimization problem into a 

single-objective optimization problem in such a way that except for one of the objective functions, the rest become 

constraints and the new constrained optimization problem is optimized [44].  
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4. SOLUTION ALGORITHM

4.1. Epsilon constraint method

In multi-objective optimization, several objective functions must
be optimized simultaneously. The general form of a multi-objective
optimization problem is as follows [44]:

Min(x) = f1(x), . . . , fN (x) (23)

s.t.g(x) ≤ 0, h(x) = 0, x ∈ Rn (24)

Here g(x) and h(x) are the set of inequality and inequality
constraints, respectively. In these problems, due to the existence
of a set of functions with conflicting goals, instead of a specific
solution, a set of solutions is obtained called Pareto front solutions.
Pareto optimal solution is the optimal solution that cannot be
improved in one of the objective functions unless the performance
of the solution in at least one of the rest objective functions is
deteriorated. The Epsilon constraint method is based on converting
a multi-objective optimization problem into a single-objective
optimization problem in such a way that except for one of the
objective functions, the rest become constraints and the new
constrained optimization problem is optimized [44].

min F (x) = fxi (25)

s.t. fj(x) ≤ εj , j = 1, . . . , n, j 6= i (26)

(x) ≤ 0, h(x) = 0, x ∈ Rn (27)

fmin
j ≤ εj ≤ fmax

j (28)

4.2. Min-max method

In this paper, the Min-Max method is employed to find the
best compromised solution from the set of Pareto set solutions.
Assuming the existence of n objective functions and m Pareto
points, the optimal Pareto point is obtained as follows [44]:

normk
j =

fkj −f
min
j

fmax
j −fmin

j
, j = 1, . . . , n, k = 1, . . . ,m

(29)

normk =
min(normk

j ), k = 1, . . . ,m
(30)

opt ={
o
(
o | normo = max(normk)

)}
, o ∈ k (31)

normk displays the minimum value between the n objective
functions at m Pareto Front points. After calculating this vector,
its maximum value is calculated and the o-point of the Pareto
leads to the maximum normk to be selected as the optimal point.
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5. THE APPLICATION OF SOLUTION ALGORITHM ON
MATHEMATICAL MODEL

The proposed model includes binary and continuous variables.
The Charging/ discharging mode of EVs needs to be binary
variables while the output/input electrical power of prosumers,
input electrical power of consumers, traded electrical power with
the grid, output/input electrical power of parking lots, electricity
price of local market, and electricity price for trading with the
upstream grid at every hour are all continues variables. Decision
variables are as follows:

Y (t) = P i→j(t), P j→i(t), P i→k(t), P i→e(m, t), P e→i(m, t), P iim(t),
P kim(t), PEV

im (e,m, t), P iex(t), PEV
ex (e,m, t),

Cnew(t), Cbuy(t), Csell(t)


∀t ∈ T,∀e ∈ NEV, ∀m ∈ NPL, ∀k ∈ Nc, ∀i, j ∈ Np

(32)

The solver of the proposed model is DICOPT solver, which has
a worthy ability to elucidate MINLP problems [45]. The DI-COPT
has been founded on the Simplex mathematical technique and it
is a tool of the GAMS software. A PC with suitable features
including Intel Core i7, 2.5GHz CPU with 12 GB of RAM
is employed for performing simulations. Fig. 5 exemplifies the
execution flowchart of the proposed model. Page 19  

 

 

Fig. 5. Flowchart for executing the proposed model. Fig. 5. Flowchart for executing the proposed model.

6. SIMULATION RESULTS

6.1. Under study system data

In order to investigate the objective functions as well as the
advantages of power trade in the context of P2P market, the study
was conducted in a 6-bus test system. The 6-bus test system and
its information is taken from [45] as Table 1. Three prosumers,
a consumer and a EVs parking lot are located in the network
buses as shown in Fig. 6. The parking lot has a capacity of
104 EVs during the day, and the cars entry and exit details and
other information were stated in Section 3. It is assumed that
solar radiation is the same for each prosumer and the difference
in solar generation is due to the difference in installed capacities.
Information related to charging and discharging EVs is taken from
[46].
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Fig. 6. 6-bus test system. 
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Fig. 6. 6-bus test system.

6.2. Case studies
To evaluate the efficacy of the proposed model, two case studies

are considered as follows:
• Case A: Only considering economic cost of the market and

formulating the proposed model as a single objective problem.
• Case B: Simultaneously considering economic cost of the

market and electrical power loss and formulating the proposed
model as a multi-objective problem.

A) Case A
Fig. 7 shows the cost of power exchange in a P2P market in

both the presence and absence of EVs and charge and discharge
of EVs. It is clear that the prices set in both cases are lower than
the purchase price of electricity from the upstream grid, and on
the other hand, the selling price of electrical power in P2P energy
market is higher than that of the upstream grid. In this way, the
producers will be able to sell their products at a higher price,
and on the other hand, buyers will be able to supply their energy
at a lower price. This benefits both the buyers and sellers of
electrical power, creating a win-win situation. It is noticeable that
most of the power needed to charge electric vehicles is supplied
during the hours of 7-11 and 15-18, when the cost of electricity
is at its lowest and solar energy is available. Consequently, during
these hours, the initial demand increases with the updated price,
according to Eq. (15), yet it remains lower than the cost of
purchasing electricity from the grid. On the other hand, during
peak electricity pricing hours from 12-14 and 19-22, EV batteries
supply more electrical power, decreasing prices. However, the price
remains higher than the selling price back to the grid, especially
during the evening hours when the power price is at its peak and
solar power production is at zero.
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It can be noted that the cost function for this case study
is $21.99315, while the figures for the system with the same
specifications but without the ability to P2P power trade stood
at $23.46825, which shows an increase of 6.7%. Taking the
economic cost of the market into account as an objective function
reduces the overall cost of participation. However, it is essential to
assess all participants’ profit or loss status compared to the current
power trading system with the upstream network. This is because,
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Table 1. Dataset of EVs in P2P energy market.

Participant No. Type Bus Line parameters Production (kWh) Consumption (kWh)
Connecting buses Resistance (pu) Peak Daily Peak Daily

1 Prosumer 2 1-2 0.05 42.77 316.386 52.5 568.17
2 Prosumer 4 1-5 0.1 12.2202 90.3960 2.4 19.88
3 Prosumer 6 2-3 0.05 9.1652 67.797 0.92 9.03
4 Consumer 3 3-4 0.01 - 0.01 0.96 10.4
5 EVs parking lot 5 5-6 0.01 0.94 ηdch 0.94 ηch

2 Pmaxdch 2 Pmaxch
2 SOCmin 6.68 SOCmax

due to the profit of one member who controls a significant part
of production or consumption in the group of participants, the
total cost decreases while the cost of others increases. In this
case, units with increased costs lose motivation to participate in
the P2P market. For this purpose, Participation willingness index
introduced in [47] is used.

PWI =
Plower cost

P
(33) Page 24  
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Where Plower cost represents the number of participations
whose costs are reduced by taking part in the P2P market, and
P is the total number of prosumers and consumers participating
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Fig. 12. P2P energy trade among prosumer 3 and other participations.

in the P2P market. By comparing the cost of each participant,
the percentage of their cost reduction is 0.48, 5.3, 4.42, 3.96 and
16.697%, respectively. Thus, the value of index PWI is calculated
equal to 1. In addition, the power flow of lines 1-2 and 1-5, which
are the lines connected to the upstream grid, in P2P energy market
shows a decrease of 6.66% in line 1-2 and a decrease of 5.02% in
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The line connecting bus no.1 to bus no.5 has the highest resistance among all network lines. Fig 13 compares the 

power flow of this line in case B and case A. The result shows that the power flow of this line is lower in case B 

than in case A. 

 

 

Fig. 13. Power flow line 1-5 as the line with the highest resistance. 

P2P energy trade allows both consumers and prosumers to take advantage of local renewable energy capacities. 

P2P electricity trading can also reduce the need for investment in generation capacity and transmission 

infrastructure to meet peak demand. Fig 14 illustrates that the major part of Prosumer 2's production is consumed 

to meet its consumption and local demands via the P2P energy market. Only during hours 12-14 is some of the 

generation capacity sold to the upstream grid since the solar generation in the prosumers peaks during these 

hours, and the amount of local generation exceeds the amount of local demand. Prosumer 3 shows a similar 

pattern, and, as illustrated in Fig 15, most of the generation is consumed locally by itself or by other prosumers. 

In Prosumer 1, as shown in Figure 16, most of the electricity produced is used by the prosumer itself. Excess 

electricity is only available during hours 10, 12, 13, and 14. During the hours between 12 and 14, the surplus power is 

sold to the grid because other prosumers do not require it at those times. 

Fig. 13. Power flow line 1-5 as the line with the highest resistance.
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On the other hand, as shown in Fig 17, it can be observed that the electrical power required by consumer during 

the hours when it is possible to generate electrical power by prosumers and EVs, is locally provided through the  

P2P market.   

 

 

    By Summarizing Fig. 14-16,  just 18% of solar energy produced is sold to the upstream grid during hours 

12-14 when solar energy generation exceeds the local demands. This achievement is in line with some of the 

Fig. 14. Electrical power trading of prosumer 2.
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line 1-5 during 24 hours.
B) Case B

In the previous case study, the economic cost was the main
factor in decision-making for power exchange between agents.
The primary objective of selecting and exchanging power was to
minimize the overall costs of the entire system, which includes
all agents. However, in power system issues, cost is not the only
decision-making factor; technical issues are also involved, and one
of the most important factors is minimizing electrical power loss.
This study introduces an objective function that includes power
transmission losses directly linked to the resistance of the lines
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between the agents. The objective is to minimize this function
to reduce power loss in the decision-making process for power
exchange. By considering these two objective functions and using
the Epsilon constraint method, Fig. 8 presents the Pareto solutions.

Considering the two objective functions in Case B, the economic
cost of the market increases by 13.98% compared to that in Case
A. In order to assess how the loss of electrical power affects the
distribution and transfer of power between participants, the supply
of electrical power to the consumer (Bus 3) through prosumer 1
(Bus 2) and prosumer 3 (Bus 6) is depicted in Figs. 9 and 10.
Fig. 9 shows that prosumers 1 and 3 have zero generation capacity
during hours 1-6 and 19-24 due to the lack of sunlight. Between
these hours, prosumer 2 (Bus 4) contributes more to meeting
consumer demand (Bus 3) in Case B compared to Case A. On the
opposite side, Fig. 10 shows that in Case B and the interval of
7-18, when there is sunlight, the electrical power transferred from
prosumer 2 (Bus 4) to consumer (Bus 3) reaches zero.

Recalling that the electrical power consumption of prosumer 1
is more than its generation capacity, the transferred power from
prosumers 2 and 3 to other participants is shown in Figs. 11
and 12, respectively. In Case B, the electrical power transferred
from prosumer 2 to the consumer, which has the lowest line
resistance among other alternatives, increased; on the other hand,
the electrical power exchange with consumer 1 and EVs decreased.
Similarly, the electrical power transferred from prosumer 3 to EVs
increased, and the transfer power to other participants reached
zero. It seems that the high resistance of the line between bus
no.1 and bus no.5, which is in the path of power transfer from
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prosumer 3 to prosumer 1, prosumer 2, and consumer, is effective
in this regard.

The line connecting bus no.1 to bus no.5 has the highest
resistance among all network lines. Fig. 13 compares the power
flow of this line in case B and case A. The result shows that the
power flow of this line is lower in case B than in case A.

P2P energy trade allows both consumers and prosumers to take
advantage of local renewable energy capacities. P2P electricity
trading can also reduce the need for investment in generation
capacity and transmission infrastructure to meet peak demand. Fig.
14 illustrates that the major part of Prosumer 2’s production is
consumed to meet its consumption and local demands via the P2P
energy market. Only during hours 12-14 is some of the generation
capacity sold to the upstream grid since the solar generation
in the prosumers peaks during these hours, and the amount of
local generation exceeds the amount of local demand. Prosumer 3
shows a similar pattern, and, as illustrated in Fig. 15, most of the
generation is consumed locally by itself or by other prosumers. In
Prosumer 1, as shown in Fig. 16, most of the electricity produced
is used by the prosumer itself. Excess electricity is only available
during hours 10, 12, 13, and 14. During the hours between 12 and
14, the surplus power is sold to the grid because other prosumers
do not require it at those times.

On the other hand, as shown in Fig. 17, it can be observed that
the electrical power required by consumer during the hours when
it is possible to generate electrical power by prosumers and EVs,
is locally provided through the P2P market.

By Summarizing Figs. 14-16, just 18% of solar energy produced
is sold to the upstream grid during hours 12-14 when solar energy
generation exceeds the local demands. This achievement is in line
with some of the main benefits of the P2P market, like increasing
the use of local products, helping peak shaving, and reducing the
upstream grid dependency.

7. CONCLUSION

Proper pricing is crucial as it can effectively incentivize
participation in the P2P energy market. However, electric vehicles
(EVs) face pricing challenges due to their owners’ unpredictable
behavior and the discrepancies with other market participants. This
paper proposes an approach for pricing and energy management
within a P2P market consisting of various participants, and models
a two-stage scheme based on predicted data and the dynamic
behavior of EVs across two case studies: Case A and Case B.

In Case A, where the focus was solely on the economic costs
of the market as the objective function, the overall cost in the P2P
energy market decreased by 6.7% compared to the power exchange
in the common market. The success of a P2P market depends
on benefiting all participants. Otherwise, participants might lose
motivation to engage in such markets. Therefore, the participation
willingness index was examined to assess whether all players
gain from the market. This metric evaluates the overall value of
participating in the P2P energy market, demonstrating that the cost
for each participant decreased compared to the traditional method
of exchanging power with the upstream grid. Additionally, the
congestion on two lines linked with the upstream grid was reduced
by 6.66% and 5.02%, respectively, compared to the system without
the P2P market. Case B included electrical power loss as part of
the decision-making process alongside economic concerns to find
an appropriate partner for power exchange. One goal of the P2P
market is to increase the amount of on-site power production.
Simulation results highlighted the superiority of the P2P market.
In this scenario, only 18% of solar power generation was sold
to the upstream grid when local demand was less than the total
local power supply. Moreover, compared to Case A, the pattern
of electrical power exchange among participants was adjusted so
that the power transferred through lines with high resistance was
reduced.
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