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Abstract. The present paper considers duals, approximate duals and pseudo-

duals of generalized frames in Hilbert C∗-modules. In particular, the ones

constructed by bounded operators inserted between the synthesis and analysis

operators of Bessel sequences are focused and characterized. Moreover, the

mentioned notions for modular g-Riesz bases are studied and some of their

properties are obtained.
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1. Introduction

A Hilbert C∗-module is considered as a generalization of a Hilbert space

by allowing the inner product to take values in a C∗-algebra rather than in

the field of complex numbers. Here, we briefly recall the definition and some

basic properties of Hilbert C∗-modules and the adjointable operators defined

on them.

Suppose that A is a unital C∗-algebra and H is a left A-module such that

the linear structures of A and H are compatible. H is a pre-Hilbert A-module
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if H is equipped with an A-valued inner product 〈·, ·〉 : H × H −→ A, that is

sesquilinear, positive definite and respects the module action. In other words

(i) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, for each α, β ∈ C and x, y, z ∈ H;

(ii) 〈ax, y〉 = a〈x, y〉, for each a ∈ A and x, y ∈ H;

(iii) 〈x, y〉 = 〈y, x〉∗, for each x, y ∈ H;

(iv) 〈x, x〉 ≥ 0, for each x ∈ H and if 〈x, x〉 = 0, then x = 0.

For each x ∈ H, we define ‖x‖ := ‖〈x, x〉‖ 1
2 . If H is complete with the norm

‖ · ‖, it is called a Hilbert A-module or a Hilbert C∗-module over A.

A Hilbert A-module H is called finitely generated if there exists a finite set

{x1, . . . , xn} ⊆ H such that every element x ∈ H can be expressed as an A-

linear combination x =
∑n

i=1 aixi, ai ∈ A. A Hilbert A-module H is countably

generated if there exists a countable set {xi}i∈I ⊆ H such that H equals the

norm-closure of A-linear hull of {xi}i∈I.
For each a in a C∗-algebra A, we have |a| = (a∗a)

1
2 and we define |x| :=

〈x, x〉 12 , for each x ∈ H. The center of A is denoted by Z(A) and is defined by

Z(A) = {a ∈ A : ab = ba,∀b ∈ A}.

We note that Z(A) is a commutative C∗-subalgebra of A. Let H and K be

Hilbert A-modules. The operator T : H −→ K is called adjointable if there

exists an operator T ∗ : K −→ H such that 〈T (x), y〉 = 〈x, T ∗(y)〉, for each

x ∈ H and y ∈ K. Every adjointable operator T is automatically bounded and

A-linear (that is, T (ax) = aT (x) for each x ∈ H and a ∈ A). We denote the

set of all adjointable operators from H into K by L(H,K) and the set of all

bounded operators from H into K is denoted by B(H,K). Note that L(H,H)

is a C∗-algebra and we denote it by L(H) and B(H,H) is denoted by B(H),

for more details see [13].

Frames for Hilbert spaces were introduced in [5]. Then, Frank and Larson

in [6] presented a general approach to the frame theory in Hilbert C∗-modules.

Let H be a Hilbert A-module. A family {fi}i∈I ⊆ H is a frame for H, if

there exist real constants 0 < A ≤ B <∞, such that for each x ∈ H,

A〈x, x〉 ≤
∑
i∈I
〈x, fi〉〈fi, x〉 ≤ B〈x, x〉. (1.1)

The numbers A and B are called the lower and upper bound of the frame, re-

spectively. In this case, we call it an (A,B) frame. If only the second inequality

is required, we call it a Bessel sequence. If the sum in (1.1) converges in norm,

the frame is called standard.

Let F = {fi}i∈I and G = {gi}i∈I be standard Bessel sequences in H. Then

we say that G (resp. F) is an alternate dual or a dual of F (resp. G), if

x =
∑

i∈I〈x, fi〉gi or equivalently x =
∑

i∈I〈x, gi〉fi, for each x ∈ H. For more

results about frames in Hilbert C∗-modules, see [6, 1].
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Generalized frames or g-frames in Hilbert spaces were introduced in [21] and

generalized to Hilbert C∗-modules in [10]:

Let {Hi}i∈I be a sequence of Hilbert A-modules. A sequence Λ = {Λi ∈
L(H,Hi) : i ∈ I} is called a g-frame for H with respect to {Hi : i ∈ I} if there

exist real constants AΛ, BΛ > 0 such that for each x ∈ H,

AΛ〈x, x〉 ≤
∑
i∈I
〈Λix,Λix〉 ≤ BΛ〈x, x〉.

AΛ and BΛ are g-frame bounds of Λ. In this case, we call it an (AΛ, BΛ) g-

frame. The g-frame is standard if for each x ∈ H, the sum converges in norm.

If only the second-hand inequality is required, Λ is called a g-Bessel sequence.

If AΛ = BΛ, the g-frame is called tight and if AΛ = BΛ = 1, the g-frame is

called Parseval.

If {Hi : i ∈ I} is a sequence of Hilbert A-modules, then

⊕i∈IHi =

{
x = {xi}i∈I : xi ∈ Hi and

∑
i∈I
〈xi, xi〉 is norm convergent in A

}
,

is a Hilbert A-module with pointwise operations and A-valued inner product

〈x, y〉 =
∑
i∈I
〈xi, yi〉,

where x = {xi}i∈I and y = {yi}i∈I.
For a standard g-Bessel sequence Λ, the operator TΛ : ⊕i∈IHi −→ H which

is defined by TΛ({gi}i∈I) =
∑

i∈I Λ∗i gi is called the synthesis operator of Λ.

TΛ is adjointable and T ∗Λ(x) = {Λix}i∈I. The operator SΛ : H −→ H which is

defined by SΛx = TΛT
∗
Λ(x) =

∑
i∈I Λ∗i Λi(x), is called the operator of Λ. If Λ is

a standard (AΛ, BΛ) g-frame, then AΛ · IH ≤ SΛ ≤ BΛ · IH.

Recall that if Λ = {Λi}i∈I and Γ = {Γi}i∈I are standard g-Bessel sequences

such that
∑

i∈I Γ∗i Λix = x or equivalently
∑

i∈I Λ∗i Γix = x, for each x ∈ H,

then Γ (resp. Λ) is called a g-dual of Λ (resp. Γ). The canonical g-dual for

an (A,B) standard g-frame Λ = {Λi}i∈I is defined by Λ̃ = {Λ̃i}i∈I, where

Λ̃i = ΛiS
−1
Λ which is an ( 1

B ,
1
A ) standard g-frame and for each x ∈ H, we have

x =
∑
i∈I

Λ∗i Λ̃ix =
∑
i∈I

Λ̃i
∗
Λix.

For more results about g-frames in Hilbert C∗-modules, see [10, 22].

Duals play an important role in frame theory and its applications. Approx-

imate duals and pseudo-duals can also be helpful, in particular, when it is

difficult to find a dual. Approximate duality for frames and g-frames in Hilbert

spaces has been investigated and studied in [4, 12] and its generalization to

Hilbert C∗-modules has been presented in [14]. Some properties of pseudo-

duals in Hilbert spaces were obtained in [3], then pseudo-duals for continuous

frames and continuous g-frames were considered in [19, 20], respectively.
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In [9], the authors, using a bounded operator Q (inserted between the syn-

thesis and analysis operators), defined a new kind of duals for a fusion frame.

Then, Q-duals and Q-approximate duals for frames, g-frames and fusion frames

in Hilbert spaces were introduced in [15, 16] (also, see [23]). Afterwards, in [17],

Q-duals and Q-approximate duals were considered for frames in Hilbert C∗-

modules, where Q is assumed to be bounded and not necessarily adjointable.

Also, Q-pseudo-duals for frames in Hilbert C∗-modules were introduced and

studied in [18].

In the present paper, the concepts of Q-duals, Q-approximate duals and

Q-pseudo-duals for generalized frames or g-frames are presented and some of

their properties are obtained. Here, all C∗-algebras are unital and all Hilbert

C∗-modules are finitely or countably generated.

2. Duals, approximate duals and pseudo-duals of standard g-frames

In this section, some properties of Q-duals, Q-approximate duals and Q-

pseudo-duals of standard g-frames are obtained. Mainly, their characterizations

are considered and some equivalent conditions for duality, approximate duality

and pseudo-duality are presented. Indeed, most of the obtained results in [20]

are generalized to Hilbert C∗-modules.

Definition 2.1. Let Λ = {Λi ∈ L(H,Hi), i ∈ I} and Γ = {Γi ∈ L(H,Hi), i ∈
I} be two standard g-Bessel sequences and let Q ∈ B(⊕i∈IHi). Then

(i) Λ is called a Q-pseudo-dual for Γ if the operator SΛ,Q,Γ := TΛQT
∗
Γ is

invertible.

(ii) Λ is called a Q-approximate dual for Γ if ‖TΛQT
∗
Γ − IH‖ < 1.

(iii) Λ is called a Q-dual for Γ if TΛQT
∗
Γ = IH.

If Q = I(⊕i∈IHi), then a Q-pseudo-dual (resp. a Q-approximate dual, a Q-

dual) is called a pseudo-dual (resp. an approximate dual, a dual) and SΛ,Q,Γ

is denoted by SΛ,Γ.

Theorem 2.2. Let Λ and Γ be two standard g-frames and let T ∈ L(H). Then

ΛT := {ΛiT ∈ L(H,Hi), i ∈ I} and ΓT := {ΓiT ∈ L(H,Hi), i ∈ I} are two

standard g-Bessel sequences. Moreover, the following statements are equivalent:

(i) There exists some Q ∈ L(⊕i∈IHi) such that the operator SΛT,Q,ΓT is

left-invertible in L(H).

(ii) There exists some Q ∈ L(⊕i∈IHi) such that the operator SΛT,Q,ΓT is

right-invertible in L(H).

(iii) The operator T is left-invertible in L(H).

Proof. For every f in H, we get∥∥∥∥∥∑
i∈I
|Λi(Tf)|2

∥∥∥∥∥ ≤ BΛ‖Tf‖2 ≤ BΛ‖T‖2‖f‖2.
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Now, Theorem 3.1 in [22] implies that ΛT is a standard g-Bessel sequence.

Similarly, ΓT is also a standard g-Bessel sequence.

(i) ⇒ (iii). It is easy to see that TΛT = T ∗TΛ and TΓT = T ∗TΓ. Hence, for

each f ∈ H, we have

SΛT,Q,ΓT (f) = TΛTQT
∗
ΓT (f) = (T ∗TΛ)Q(T ∗ΓT )f = T ∗(TΛQT

∗
Γ)Tf.

Since SΛT,Q,ΓT is left-invertible, we conclude that T is left-invertible.

(ii)⇒ (iii). Since SΛT,Q,ΓT is right-invertible, we conclude that T ∗ is right-

invertible which is equivalent to say that T is left-invertible.

(iii)⇒ (i), (ii). Let LT be a left inverse of T and define

Q := T ∗
Λ̃
L∗TTΓ̃.

Then SΛT,Q,ΓT = T which is left-invertible and if Q := T ∗
Λ̃
LTTΓ̃, we have

SΛT,Q,ΓT = T ∗ which is right-invertible. �

Corollary 2.3. Let Λ and Γ be two standard g-frames and let T ∈ L(H). Then

ΛT := {ΛiT ∈ L(H,Hi), i ∈ I} and ΓT := {ΓiT ∈ L(H,Hi), i ∈ I} are two

standard g-Bessel sequences. Moreover, if ΛT is a Q-pseudo-dual for ΓT, then

T is left-invertible.

The next result is an immediate consequence of the stated proof for the

Theorem 2.2.

Corollary 2.4. Let Λ and Γ be two standard g-frames and let T ∈ L(H). Then

ΛT := {ΛiT ∈ L(H,Hi), i ∈ I} and ΓT := {ΓiT ∈ L(H,Hi), i ∈ I} are two

standard g-Bessel sequences. Moreover, if Λ is a Q-pseudo-dual for Γ and T is

invertible, then ΛT is a Q-pseudo-dual for ΓT.

Theorem 2.5. Let Λ = {Λi ∈ L(H,Hi), i ∈ I}, Γ = {Γi ∈ L(H,Hi), i ∈ I}
and Θ = {Θi ∈ L(H,Hi), i ∈ I} be three standard g-Bessel sequences. Then

(i) Θ− Λ := {Θi − Λi ∈ L(H,Hi), i ∈ I} that for every f ∈ H

(Θi − Λi)f = Θif − Λif

is a standard g-Bessel sequence.

(ii) If ‖TΘ−ΛQT
∗
Γ‖ < 1 and Λ is a Q-dual for Γ, then Θ is a Q-approximate

dual for Γ.

Proof. (i) For each f ∈ H, we have∥∥∥∥∥∑
i∈I
|(Θi − Λi)f |2

∥∥∥∥∥ ≤ BΘ‖f‖2 +BΛ‖f‖2 + 2

∥∥∥∥∥∑
i∈I
|Θif |2

∥∥∥∥∥
1
2
∥∥∥∥∥∑

i∈I
|Λif |2

∥∥∥∥∥
1
2

≤ BΘ‖f‖2 +BΛ‖f‖2 + 2
√
BΘBΛ‖f‖2,

So Θ− Λ is a standard g-Bessel sequence.
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(ii) It is obvious that TΘ−Λ = TΘ − TΛ, so

TΘQT
∗
Γ = TΘ−ΛQT

∗
Γ + TΛQT

∗
Γ = TΘ−ΛQT

∗
Γ + IH.

Consequently

‖TΘQT
∗
Γ − IH‖ = ‖TΘ−ΛQT

∗
Γ‖ < 1,

which means that Θ is a Q-approximate dual of Γ.

This completes the proof. �

Theorem 2.6. Let Γ = {Γi ∈ L(H,Hi), i ∈ I} be a standard g-Bessel

sequence. Then, the following statements are equivalent:

(i) Γ has a Q-dual, for some Q ∈ B(⊕i∈IHi).

(ii) Γ has a Q-approximate dual, for some Q ∈ B(⊕i∈IHi).

(iii) Γ has a Q-pseudo-dual, for some Q ∈ B(⊕i∈IHi).

(iv) Γ is a standard g-frame.

(v) Γ is a Q-dual of itself, for some Q ∈ B(⊕i∈IHi).

(vi) Γ is a Q-approximate dual of itself, for some Q ∈ B(⊕i∈IHi).

(vii) Γ is a Q-pseudo-dual of itself, for some Q ∈ B(⊕i∈IHi).

Proof. The implications (i) ⇒ (ii) ⇒ (iii), (v) ⇒ (vi) ⇒ (vii) ⇒ (iii) and

(v)⇒ (i) are obvious.

(iii) ⇒ (iv). Assume that there exists some Q ∈ B(⊕i∈IHi) such that Λ is a

Q-pseudo-dual of Γ, which is, SΛ,Q,Γ := TΛQT
∗
Γ is invertible. Then, for each

f ∈ H, we obtain that

‖f‖ = ‖S−1
Λ,Q,ΓSΛ,Q,Γf‖ ≤ ‖S−1

Λ,Q,Γ‖‖TΛ‖‖Q‖‖T ∗Γf‖,

so

‖f‖2

‖S−1
Λ,Q,Γ‖2‖TΛ‖2‖Q‖2

≤

∥∥∥∥∥∑
i∈I
|Γif |2

∥∥∥∥∥ ≤ BΓ‖f‖2.

Now, Theorem 3.1 in [22] yields that Γ is a standard g-frame.

(iv)⇒ (v). Assume that Γ = {Γi ∈ L(H,Hi), i ∈ I} is a standard g-frame

for H, so

Γ̃ := {ΓiS
−1
Γ ∈ L(H,Hi), i ∈ I}

is a standard g-frame for H, and Γ̃ is a dual for Γ, so TΓ̃ and T ∗
Γ̃

are bounded.

Then Q := T ∗
Γ̃
TΓ̃ is a bounded operator and we have

TΓQT
∗
Γ = TΓ(T ∗

Γ̃
TΓ̃)T ∗Γ = IH,

meaning that Γ is a Q-dual of itself. �

Proposition 2.7. Let Λ and Γ be two standard g-Bessel sequences and let

Q ∈ B(⊕i∈IHi). Then, the following statements are equivalent:

(i) Λ is a Q-pseudo-dual (Q-approximate dual) of Γ.
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(ii) Γ is a standard g-frame and there exist an invertible operator S ∈ B(H)

(S ∈ B(H) with ‖S − IH‖ < 1) and some R ∈ B(⊕i∈IHi,H) such that

TΛQ = S(S−1
Γ TΓ +R(I⊕i∈IHi − T ∗ΓS−1

Γ TΓ)).

Proof. (i) ⇒ (ii). Since Λ is a Q-pseudo-dual (Q-approximate dual) of Γ, by

Theorem 2.6, Γ is a standard g-frame. Let

S := SΛ,Q,Γ, R := S−1
Λ,Q,ΓTΛQ ∈ B(⊕i∈IHi,H).

Then, it is easy to see that

S(S−1
Γ TΓ +R(I⊕i∈IHi − T ∗ΓS−1

Γ TΓ)) = TΛQ.

(ii) ⇒ (i). If Γ is a standard g-frame and there are operators S ∈ B(H) and

R ∈ B(⊕i∈IHi,H) such that S is invertible (‖S − IH‖ < 1) and

TΛQ = S(S−1
Γ TΓ +R(I⊕i∈IHi

− T ∗ΓS−1
Γ TΓ)),

then it is obtained that

TΛQT
∗
Γ = S(TΓT

∗
Γ)−1TΓT

∗
Γ + SRT ∗Γ − SRT ∗Γ(TΓT

∗
Γ)−1TΓT

∗
Γ

= S + SRT ∗Γ − SRT ∗Γ = S.

Since S is invertible (‖S − IH‖ < 1), Λ is a Q-pseudo-dual (Q-approximate

dual) of Γ. �

Corollary 2.8. Let Γ and Λ be two standard g-Bessel sequences, and let Q ∈
B(⊕i∈IHi). Then Λ is a Q-dual of Γ if and only if Γ is a standard g-frame and

there exists some R ∈ B(⊕i∈IHi,H) such that

TΛQ = (TΓT
∗
Γ)−1TΓ +R(I⊕i∈IHi − T ∗ΓS−1

Γ TΓ).

3. Duals, approximate duals and pseudo-duals of modular g-Riesz

bases

In this section, duals, approximate duals and pseudo-duals of modular g-

Riesz bases are considered. We mention that Riesz bases in Hilbert C∗-modules

were introduced in [6]. It was shown in [7] that a Riesz basis in a Hilbert C∗-

module can possess more than one dual and a dual of a Riesz basis is not

necessarily a Riesz basis. The authors in [2, 7, 8, 11] studied the Riesz bases

with only one dual (the canonical dual). This kind of Riesz bases is called

a modular Riesz basis and its generalization, introduced in [11], is called a

modular g-Riesz basis.

Definition 3.1. Let Γ = {Γi ∈ L(H,Hi), i ∈ I} be a standard g-frame. Then

Γ is called a modular g-Riesz basis if it has only one dual, i.e., Γ̃ := {ΓiS
−1
Γ ∈

L(H,Hi), i ∈ I} (the canonical dual) is the only dual of Γ.

Theorem 3.2. Let Γ = {Γi ∈ L(H,Hi), i ∈ I} be a standard g-frame. Then,

the following statements are equivalent:
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(i) Γ is a modular g-Riesz basis.

(ii) For every adjointable, invertible operator T on H, Γ ◦ T := {Γi ◦ T ∈
L(H,Hi), i ∈ I} is a modular g-Riesz basis.

(iii) Every pseudo-dual of Γ is a modular g-Riesz basis.

(iv) Every approximate dual of Γ is a modular g-Riesz basis.

(v) Every dual of Γ is a modular g-Riesz basis.

Proof. (i) ⇒ (ii). Let Γ be a modular g-Riesz basis and let T be an invertible

operator on H. For each f ∈ H, we get∥∥∥∥∥∑
i∈I
|ΓiTf |2

∥∥∥∥∥ ≤ BΓ‖Tf‖2 ≤ BΓ‖T‖2‖f‖2. (3.1)

Since

‖Tf‖ = ‖S−1
Γ SΓTf‖ ≤ ‖S−1

Γ ‖‖TΓ‖‖T ∗ΓTf‖,

we have

‖Tf‖2 ≤ ‖S−1
Γ ‖

2‖TΓ‖2
∥∥∥∥∥∑

i∈I
|ΓiTf |2

∥∥∥∥∥ .
Now, the invertibility of T implies that

‖f‖2

‖T−1‖2‖S−1
Γ ‖2‖TΓ‖2

≤

∥∥∥∥∥∑
i∈I
|ΓiTf |2

∥∥∥∥∥ ≤ BΓ‖T‖2‖f‖2,

so Γ ◦ T is a standard g-frame. Now, let Λ be a dual of Γ ◦ T. Then

IH = TΛT
∗
Γ◦T = TΛ(T ∗TΓ)∗ = TΛT

∗
ΓT.

Thus

T−1 = TΛT
∗
Γ ,

so

TΛ◦T∗T
∗
Γ = TTΛT

∗
Γ = TT−1 = IH.

Hence, Λ ◦ T ∗ is a dual of Γ. Since Γ is a modular g-Riesz basis, it possesses

just one dual which is Γ̃, so Γ̃ = Λ ◦ T ∗, and since T is invertible, we have

Γ̃T ∗−1 = Λ

which means that Γ ◦ T has only one dual, consequently Γ ◦ T is a modular

g-Riesz basis.

(ii) ⇒ (i). Since for each invertible operator T on H, Γ ◦ T is a modular

g-Riesz basis, the statement holds for T := IH.

(i) ⇒ (iii). Let Λ be a pseudo-dual for Γ. Then, by considering T := S−1
Γ,Λ,

Λ ◦ T is a dual for Γ, so Λ ◦ T = Γ̃, consequently

Λ = Γ̃ ◦ T−1.

Now, the same argument stated for the proof of the implication (i)⇒ (ii) yields

that Λ is modular g-Riesz basis.
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The implications (iii)⇒ (iv)⇒ (v) are obvious.

(v) ⇒ (i). Since every dual of Γ is a modular g-Riesz basis, Γ̃ := ΓS−1
Γ is also

a modular g-Riesz basis, so it has only one dual. Now, it is easy to see that Γ

has also only one dual. �

Proposition 3.3. Let Γ = {Γi ∈ L(H,Hi), i ∈ I} be a standard g-frame.

Then, the following statements are equivalent:

(i) There exists a dual for Γ which is a modular g-Riesz basis.

(ii) There exists some approximate dual for Γ which is a modular g-Riesz

basis.

(iii) There exists some pseudo-dual for Γ which is a modular g-Riesz basis.

(iv) There exists some adjointable, invertible operator T on H such that

Γ ◦ T is a modular g-Riesz basis.

(v) Γ is a modular g-Riesz basis.

Proof. The implications (i)⇒ (ii)⇒ (iii) are obvious.

(iii)⇒ (iv). Suppose that there exists a pseudo-dual for Γ like Θ = {Θi}i∈I
which is a modular g-Riesz basis, so SΘ,Γ and SΓ,Θ are invertible. Now, for

R := S−1
Γ,Θ, it is easy to see that Θ ◦ R := {Θi ◦ R}i∈I is a standard g-Bessel

sequence and ∑
i∈I

(Θi ◦R)∗Γif = S−1
Θ,Γ

∑
i∈I

Θ∗i Γif = f,

so Θ ◦R is a dual of Γ. Therefore

IH = TΓT
∗
Θ◦R = TΓ(R∗TΘ)∗ = TΓT

∗
ΘR.

Now, by the invertibility of R, it is obtained that

TΓT
∗
Θ = R−1,

so Γ ◦R∗ is a dual of Θ because

TΓ◦R∗T
∗
Θ = RTΓT

∗
Θ = RR−1 = IH.

On the other hand, since Θ is a modular g-Riesz basis, we get

Γ ◦R∗ = Θ̃ = ΘS−1
Θ .

Now by considering T := R∗SΘ, we have

Γ ◦ T = Γ ◦R∗SΘ = Θ ◦ S−1
Θ SΘ = Θ

and it is concluded that Γ ◦ T is a modular g-Riesz basis.

(iv) ⇒ (v). Suppose that there exists an invertible operator T on H such

that Λ := Γ ◦ T is a modular g-Riesz basis. If Θ1,Θ2 are two duals for Γ, then

we have

TΘ1
T ∗Γ = IH = TΓT

∗
Θ1
.
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Thus

TΘ1◦T−1∗T ∗Γ◦T = T−1TΘ1
(T ∗TΓ)∗ = T−1TΘ1

T ∗ΓT = IH.

Hence Θ1 ◦ T−1∗ is a dual for Λ. Similarly, we can obtain that Θ2 ◦ T−1∗ is

also a dual for Λ. Since Λ is a modular g-Riesz basis, Θ1 ◦ T−1∗ = Θ2 ◦ T−1∗,

so Θ1 = Θ2 which implies that Γ is a modular g-Riesz basis.

The implication (v)⇒ (i) can be obtained using Γ̃ (the canonical dual of Γ)

as a dual of Γ which is a modular g-Riesz basis. �
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