Journal of Finsler Geometry and its Applications Vol. 6, No. 1 (2025), pp 76-82 https://doi.org/10.22098/jfga.2025.16485.1145

Closed graph property and Khalimsky spaces

Mehrnaz Pourattar^a, Fatemah Ayatollah Zadeh Shirazi^{b*} (\bigcirc), and Mohammad Reza Mardanbeigi^c

^aDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
^bFaculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Iran

^cDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

> E-mail: mpourattar@yahoo.com E-mail: f.a.z.shirazi@ut.ac.ir E-mail: mrmardanbeigi@srbiau.ac.ir

Abstract. In the following text for Khalimsky n-dimensional space \mathcal{K}^n we show self-map $f : \mathcal{K}^n \to \mathcal{K}^n$ has closed graph if and only if there exist integers $\lambda_1, \ldots, \lambda_n$ such that f is a constant map with value $(2\lambda_1, \cdots, 2\lambda_n)$. We also show each self-map on Khalimsky circle and Khalimsky sphere which has closed graph is a constant map.

Keywords: Alexandroff space, Closed graph, Digital topology, Khalimsky spaces.

1. Introduction

Alexandroff spaces introduced as "Diskrete Räume" by P. Alexandroff in [1]. One may consider different sub-classes of Alexandroff spaces like finite topological spaces [12], functional Alexandroff topological spaces [2], locally finite

^{*}Corresponding Author

AMS 2020 Mathematics Subject Classification: 54C35, 54D05

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili

topological spaces [7, 13], n-dimensional Khalimsky spaces [6, 7], etc. Interaction between Alexandroff topological spaces and other mathematical structures has been studied in different texts (see e.g. [5]).

Closed graph property has been studied in different categories of topological spaces: Banach spaces, complete metric spaces, and general topological spaces, etc. (see e.g. [9, 10, 14, 15, 17]).

Let's recall that in topological spaces X, Y and map $f : X \to Y$ we call $G_f := \{(x, f(x)) : x \in X\}$ the graph of f and we say $f : X \to Y$ has closed graph if G_f is a closed subset of $X \times Y$ (with product topology) [4]. The main aim of this text is to characterize all self-maps on n-dimensional Khalimsky spaces with closed graph.

Background on Alexandroff spaces. A topological space (X, τ) or simply X is an Alexandroff space if for each nonempty collection of open subsets of X like Γ , $\bigcap \Gamma$ is open too. In particular in Alexandroff space X for each $x \in X$ the intersection of all open neighbourhoods of X is the smallest open neighbourhood of x, we denote the smallest open neighbourhood of x by $V_X(x)$ or simply by V(x).

Moreover, product of two topological Alexandroff spaces is an Alexandroff space too. Note that if X, Y are Alexandroff spaces and $(x, y) \in X \times Y$, then $V_{X \times Y}(x, y) = V_X(x) \times V_Y(y)$ (where $X \times Y$ is equipped with product topology). Using induction product of finitely of finitely many Alexandroff spaces is an Alexandroff space.

Background on Khalimsky spaces. Let's equip $\mathbb{Z} = \{0, \pm 1, \pm 2, \cdots\}$ with topology κ generated by basis $\{\{2n-1, 2n, 2n+1\} : n \in \mathbb{Z}\} \cup \{\{2n+1\} : n \in \mathbb{Z}\}$. We call the Alexandroff topological space (\mathbb{Z}, κ) Khalimsky line and denote it by \mathcal{K} . For integers a, b with $a \leq b$ let

- $\mathcal{A}) \ [a,b]_{\mathcal{K}} := \{ x \in \mathbb{Z} : a \le x \le b \},\$
- $\mathcal{B}) \ [a, +\infty)_{\mathcal{K}} := \{ x \in \mathbb{Z} : x \le a \},\$
- $\mathcal{C}) \ (-\infty, a]_{\mathcal{K}} := \{ x \in \mathbb{Z} : x \ge a \}.$

All subsets of \mathcal{K} introduced in $(\mathcal{A}, \mathcal{B}, \mathcal{C})$ and \emptyset, \mathcal{K} are intervals of Khalimsky line \mathcal{K} .

For natural number n, we call \mathcal{K}^n an n-dimensional Khalimsky space. \mathcal{K}^2 is called Khalimsky plane and one may consider it in digital topology too [11]. In topological space X suppose $\infty \notin X$ and let $A(X) := X \cup \{\infty\}$. Equip A(X)with topology $\{U \subseteq X : U \text{ is an open subset of } X\} \cup \{U \subseteq A(X) : X \setminus U \text{ is a compact closed subset of } X\}$ then we call A(X) one point compactification or Alexandroff compactification of X [16].

We call one point compactification of Khalimsy line as Khalimsky circle and also one point compactification of Khalimsky plane as Khalimsky sphere (see e.g., [6, 7]).

78 Mehrnaz Pourattar, Fatemah Ayatollah Zadeh Shirazi, and Mohammad Reza Mardanbeigi

2. When does self-map $f : \mathcal{K}^n \to \mathcal{K}^n$ have closed graph?

In this section we investigate all cases which a self-map on \mathcal{K}^n (resp. $A(\mathcal{K}^n)$) has closed graph.

Lemma 2.1. For each $x, y \in \mathcal{K}^n$ there exists finite sequence $x = x_1, x_2, \ldots, x_p = y \in \mathcal{K}^n$ such that for each $i \in \{1, \ldots, p-1\}$ we have $V_{\mathcal{K}^n}(x_i) \cap V_{\mathcal{K}^n}(x_{i+1}) \neq \emptyset$.

Proof. Let's use induction on n.

If n = 1 and $x, y \in \mathcal{K}$ choose $z, w \in \mathbb{Z}$ such that $|2z - x| \leq 1$ and $|2w - y| \leq 1$, hence $V_{\mathcal{K}}(x) \cap V_{\mathcal{K}}(2z) \neq \emptyset$ and $V_{\mathcal{K}}(2w) \cap V_{\mathcal{K}}(y) \neq \emptyset$. We may suppose $z \leq w$, then for $x_1 = x, x_2 = 2z, z_3 = 2z + 2, \dots, x_{w-z+2} = 2w, x_{w-z+3} = y$ and each $i \in \{1, \dots, x - z + 2\}$ we have

$$V_{\mathcal{K}}(x_i) \cap V_{\mathcal{K}}(x_{i+1}) \neq \emptyset$$

Suppose the statement is true for $n = q \ge 1$, i.e. for each $a, b \in \mathcal{K}^q$ there exists finite sequence $a = x_1, x_2, \ldots, x_p = b \in \mathcal{K}^q$ such that for each $i \in \{1, \ldots, p-1\}$ we have

$$V_{\mathcal{K}^q}(x_i) \cap V_{\mathcal{K}^q}(x_{i+1}) \neq \emptyset.$$

Choose

$$x = (c, d), y = (u, v) \in \mathcal{K} \times \mathcal{K}^q (= \mathcal{K}^{q+1}),$$

since $c, u \in \mathcal{K}$ and $d, v \in \mathcal{K}^q$ using induction's hypothesis there exist $c_1 = c, \ldots, c_s = u \in \mathcal{K}$ and $d_1 = d, \ldots, d_t = v \in \mathcal{K}^q$ such that for each $i \in \{1, \ldots, s-1\}$ and $j \in \{1, \ldots, t-1\}$ we have

$$V_{\mathcal{K}}(c_i) \cap V_{\mathcal{K}}(c_{i+1}) \neq \emptyset, \quad V_{\mathcal{K}^q}(d_j) \cap V_{\mathcal{K}^q}(d_{j+1}) \neq \emptyset.$$

Let

$$x_1 = x = (c, d) = (c_1, d), x_2 = (c_2, d), \dots, x_s = (c_s, d) = (u, d) = (u, d_1),$$
$$x_{s+1} = (u, d_2), \dots, x_{s+t-1} = (u, d_t) = (u, v).$$

Then, for each $i \in \{1, \ldots, s+t-2\}$ we have $V_{\mathcal{K}^{q+1}}(x_i) \cap V_{\mathcal{K}^{q+1}}(x_{i+1}) \neq \emptyset$ (use the fact that $V_{\mathcal{K}^{q+1}}(c_k, d_l) = V_{\mathcal{K}}(c_k) \times V_{\mathcal{K}^q}(d_l)$.

Lemma 2.2. In topological space X if $f : X \to X$ has closed graph, then for each $x \in X$, and $y \in \overline{\{x\}}$ we have f(x) = f(y), in particular if x has the smallest open neighbourhood like V, then for each $z \in V$, f(x) = f(z).

Proof. Suppose $f: X \to X$ has closed graph, $x \in X$ and $y \in \overline{\{x\}}$. Thus

$$(y, f(x)) \in \overline{\{x\}} \times \overline{\{f(x)\}} = \overline{\{(x, f(x))\}} \subseteq \overline{G_f} = G_f = \{w, f(w)) : w \in X\},$$

which leads to f(y) = f(x). In order to complete the proof note that if x has the smallest open neighbourhood like V, then for each $z \in V$ we have $x \in \overline{\{z\}}$, therefore f(z) = f(x).

Theorem 2.3. If $n \ge 1$ and X is one of the following spaces:

- an interval in \mathcal{K} ,
- n-dimensional Khalimsky space \mathcal{K}^n ,
- $A(\mathcal{K}^n)$,

then each $f: X \to X$ with closed graph is a constant map.

Proof. Consider $f: X \to X$ has closed graph.

First suppose X is an interval in \mathcal{K} with at least two elements or X is \mathcal{K}^n , then by Lemma 2.1 for each $x, y \in X$ there exist $x = x_1, \ldots, x_p = y \in X$ such that for each $i \in \{1, \ldots, p-1\}$ we have $V_X(x_i) \cap V_X(x_{i+1}) \neq \emptyset$. By Lemma 2.2, f(x) = f(y), which shows that f is a constant map.

Now Suppose $X = A(\mathcal{K}^n)$, using a similar method described in the previous paragraph the restriction of f to \mathcal{K}^n is constant. Suppose f(x) = c for all $x \in \mathcal{K}^n$, then

$$(\infty, c) \in A(\mathcal{K}^n) \times \{c\} = \overline{\mathcal{K}^n \times \{c\}} \subseteq \overline{G_f} = G_f.$$

Hence $f(\infty) = c$ and f is a constant map in this case too.

Note 2.4. In nonempty topological spaces X, Y if constant map $f : X \to Y$ has closed graph, then $X \times \{c\} = G_f = \overline{G_f} = \overline{X \times \{c\}} = X \times \overline{\{c\}}$, hence $\overline{\{c\}} = \{c\}$ and c is a closed point of X. Thus constant map $X \to Y$ has closed graph if and only if b is a closed point of X.

Now we are ready to establish our main theorem.

Theorem 2.5 (main). Consider $n \ge 1$.

- Suppose X is an interval in \mathcal{K} with at least two elements. $f: X \to X$ has closed graph if and only if there exists even integer $2\lambda \in X$ such that f is the constant map with value 2λ .
- $f: \mathcal{K}^n \to \mathcal{K}^n$ has closed graph if and only if there exist even integers $2\lambda_1, \ldots, 2\lambda_n$ such that f is the constant map with value $(2\lambda_1, \ldots, 2\lambda_n)$.
- f: A(Kⁿ) → A(Kⁿ) has closed graph if and only if one of the following conditions occurs:
 - there exist even integers $2\lambda_1, \ldots, 2\lambda_n$ such that f is the constant map with value $(2\lambda_1, \ldots, 2\lambda_n)$,
 - f is the constant map with value ∞ .

80 Mehrnaz Pourattar, Fatemah Ayatollah Zadeh Shirazi, and Mohammad Reza Mardanbeigi

Proof. If X is an interval in \mathcal{K} with at least two elements, then $X \cap 2\mathbb{Z}$ is the collection of all closed points of X. Also $(2\mathbb{Z})^n$ is the collection of all closed points of \mathcal{K}^n . Moreover $(2\mathbb{Z})^n \cup \{\infty\}$ is the collection of all closed points of $A(\mathcal{K}^n)$. Now use Theorem 2.3 and Note 2.5 to complete the proof. \Box

3. A Diagram

In this section via a diagram we compare the collections of self-maps on \mathcal{K}^n satisfying one of the following conditions:

- has closed graph,
- is constant,
- is continuous,
- is quasi-continuous,
- is just a self-map on \mathcal{K}^n .

Let's recall that in topological spaces $X, Y, f : X \to Y$ is quasi-continuous at $a \in X$ if for each open neighbourhoods U of a and V of f(a) there exists nonempty open subset W of U such that $f(W) \subseteq V$. Also we say $f : X \to Y$ is quasi-continuous if it is quasi-continuous at all pints of X [3, 8]. Now we have the following diagram:

In order to complete the above diagram consider the following examples which have been referred to the diagram. **Example 3.1.** Consider $f : \mathcal{K}^n \to \mathcal{K}^n$ with $f(x) = (0, \dots, 0)$ for all $x \in \mathcal{K}^n$, then by Theorem 2.5, $f : \mathcal{K}^n \to \mathcal{K}^n$ has closed graph. Note that by Theorem 2.5 all self-maps on \mathcal{K}^n with closed graph are constant maps.

Example 3.2. Consider constant map $f : \mathcal{K}^n \to \mathcal{K}^n$ with $f(x) = (1, \dots, 1)$ for all $x \in \mathcal{K}^n$ then by Theorem 2.5, $f : \mathcal{K}^n \to \mathcal{K}^n$ does not have closed graph. Note that all constant maps are continuous.

Example 3.3. $f : \mathcal{K}^n \to \mathcal{K}^n$ with f(x) = x for all $x \in \mathcal{K}^n$ is a continuous non-constant map. Note that all continuous maps are quasi-continuous.

Example 3.4. Consider $h : \mathcal{K} \to \mathcal{K}$ with h(2m) = h(2m+1) = 2m+1 for each $m \in$, then $f : \mathcal{K}^n \to \mathcal{K}^n$ with $f(x_1, \dots, x_n) = (h(x_1), \dots, h(x_n))$ for all $(x_1, \dots, x_n) \in \mathcal{K}^n$ is a quasi-continuous map which is not continuous.

Example 3.5. Consider $h : \mathcal{K} \to \mathcal{K}$ with h(2m) = -h(2m+1) = 1 for each $m \in ,$ then $f : \mathcal{K}^n \to \mathcal{K}^n$ with $f(x_1, \dots, x_n) = (h(x_1), \dots, h(x_n))$ for all $(x_1, \dots, x_n) \in \mathcal{K}^n$ is a is not quasi-continuous.

Acknowledgment: The authors wish to dedicate this paper to our lady, Fatimah-Zahra (as).

References

- 1. P. Alexandroff, Diskrete Räume, Mat. Sb. 2 (1937), 501-518.
- F. Ayatollah Zadeh Shirazi and N. Golestani, Functional Alexandroff spaces, Hacettepe Journal of Mathematics and Statistics 40/4 (2011), 515–522.
- F. Ayatollah Zadeh Shirazi and N. Shirinbayan, The size of quasicontinuous maps on Khalimsky line, J. Finsler Geom. Appl. 4 no. 2 (2023), 38–42.
- T. Banakh, M. Filipczak, and J. Wódka, *Returning functions with closed graph are continuous*, Mathematica Slovaca, **70 no. 2** (2020), 297–304.
- R. Berghammer and M. Winter, Order- and graph-theoretic investigation of dimensions of finite topological spaces and Alexandroff spaces, Monatsh. Math. 190 no. 1 (2019), 33–78.
- S.-E. Han, Semi-separation axioms of the infinite Khalimsky topological sphere, Topology Appl. 275 (2020), 107006.
- S.-E. Han, Sang-Eon, and I.-K. Na, Topologies associated with the one point compactifications of Khalimsky topological spaces, Topology Appl. 241 (2018), 333–344.
- L. Holá and D. Holý, Metrizability of the space of quasicontinuous functions, Topology and its Applications 246 (2018), 137–143.
- G. B. Folland, *Real analysis. Modern techniques and their applications*, Second edition. Pure and Applied Mathematics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1999.
- T. Husain, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965.
- E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 no. 1 (1990), 1–17.
- V. Krishnamurthy, On the number of topologies on a finite set, American Mathematical Monthly 73/2 (1966), 154–57.

- 82 Mehrnaz Pourattar, Fatemah Ayatollah Zadeh Shirazi, and Mohammad Reza Mardanbeigi
- 13. J. R. Munkres, Topology A first course, Prentice-Hall Inc., 1975.
- D. Noll, Topological spaces satisfying a closed graph theorem, Topology Appl. 349 (2024), 108903.
- B. J. Pettis, Closed graph and open mapping theorems in certain topologically complete spaces, Bull. London Math. Soc. 6 (1974), 37–41.
- L. A. Steen and J. A. Seebach, *Counterexamples in topology*, Holt, Rinehart and Winston, Inc., 1970.
- J. H. van der Walt, A closed graph theorem for order bounded operators, Quaest. Math. 39 no. 2 (2016), 167–178.

Received: 04.01.2025 Accepted: 17.03.2025