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Eigenvalue estimate for the Laplace operator on Finsler
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Abstract. In this paper, we study about the first eigenvalue of the bi-Laplace
operator on Finsler manifolds. Considering a bounded weighted Ricci curvature
on a complete Finsler manifold, we obtain an upper bound for the first eigenval-
ues of Buckling and Clamped plate problems related with the first eigenvalue
of the Laplace operator.

Keywords: Eigenvalue problem, Finsler manifold, Weighted Ricci curvature.

1. Introduction

Studying eigenvalues and eigenfunctions of geometric operators play an im-
portant role in global differential geometry. These studies make connection
between geometry and analysis of the manifold. So far, eigenvalue estimate
has been extensively studied on Riemannian manifolds for different geomet-
ric operators, such as, Laplace, p-Laplace and bi-Laplace. According to the
importance of eigenvalues, authors have been tried to find some relations for
different eigenvalues(see [5, 7, 8, 9]). Due to the fact that Finsler geometry is
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a natural generalization of Riemannian geometry, in recent decades eigenvalue
estimate have been widely investigated for Finsler operators. For example see
[3, 12, 13, 14] for some interesting results on Finsler p-Laplacian. Following
some methods of recent researches on Riemannian manifolds, we are going to
answer below questions:

1- Is there any relations between the first eigenvalue of Laplace operator and
the first eigenvalue of Clamped plate problem?

2- Is there any relations between the first eigenvalue of Laplace operator and
the first eigenvalue of Buckling problem?

There are two well-known bi-Laplace eigenvalue problems define on a Rie-
mannian manifold as below:

A%y =Tu n N,
ou
ulpp = ﬁhfw =0 (Clamped plate)
and
A%y = —AAu in N,
ou )
ulpp = ﬁbz\r =0 (Buckling)

where A? is the bi-harmonic operator, B is a bounded domain of N, and w
denotes the outer unit normal vector field of ON. We refer the readers to
[1, 4, 6] for studying eigenvalue estimate of these two problems.

Similarly, for a compact connected Finsler manifold (M, F,du) with smooth
boundary dM, consider M, = {x € M|du(z) # 0}, then Clamped plate and
Buckling problems define as follows:

AVUAy =Tu n M,,
{U|BB = g7 (7, Vu)lorr =0
and
AVUPAu = —AAu n M,,
{uaB = g7 (7, V) orr = 0

here A and AV* are Laplacian and weighted Laplacian, the outer unit normal
vector field on OM denotes by 7, which induces the Riemannian structure g+
on OM.

Consider H*(M) = {u : u, F(Vu), \V2u|§is(vw € L*(M)}, here

/M IV2ult 5wy i = /M VUl (v it
Let HZ(M) be the subset of H?(M) defines

)
H2(M) = {u € H2(M) : ulonr = ﬁw = o}.
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The first eigenvalue of Clamped plate and Buckling define as follows (see [11]):

Au)2d
D= omin Ju(Bw)’de
weHZ(M)uz0 [, u?dp
and
fM(Au)Qd,U

Ay = i AT A e
" wenz(n) uzo [, (F(Vu)2dp

2. Preliminaries

In this section, we will review some necessary formula in finsler geometry.
(For further reading we refer to [2])

Definition 2.1. Let M be an n-dimensional smooth manifold. We say a func-
tion F' : TM — [0,00) is a Finsler structure if the following three conditions
hold:
(i) Fis C*> on TM \ {0};
(i) F(\V) = AF(V), YV € TM \ {0}, and A\ > 0;
(i4i) For any V € T, M \ {0}, the n X n matriz

(955 (V)m = G Wlvs)lsy

is positive definite. The pair (M, F) is called a Finsler manifold.

A Finsler manifold is said to be reversible if F'(—V) = F(V) forall V € TM\
{0}. A triple (M, F,du) constituted with a smooth, connected n-dimensional
manifold M, a Finsler structure F on M, and a measure p on M is called
a Finsler measure space. For every non-vanishing vector field V', the positive
definite matrix (g;;(V'));;—; induces a Riemannian structure gy of T, M with

QV( i=1X M|x,2j=1yja$j|z) =X0195(V)X'Y for XY € T, M.

In particular, gy (V, V) = F(V)2.

Consider the natural projection map « : TM — M, the pull-back bundle
7m*TM admit a unique linear connection as Chern connection. The Chern
connection is determined by the following structure equations:

1) Torsion freeness:
DYY — Dy X = [X,Y],
2) Almost g-compatibility:
Xgv(Y,Z) = gv(DXY, Z) + gv (Y, DX z) + 2Cv (DX V.Y, Z),
here V e T,M \ {0}, X,Y,Z € TM, and
33F2

o 1
— (.. iyvigk _
Cv(X,Y,Z2)=Cix(V)X'Y'Z 1OViOVigvF

(VX'YI Zk,
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denotes the Cartan tensor and D¥Y the covariant derivative with respect to
reference vector V € T, M \ {0}.

The coefficient of the Chern connection are

ri _1u<5gu 3g;t 59jk>

kT 9

oxd  dxk ox!

that compute as follows

0 ) B
v _ i
D9 a7 = Tnl@ Vg0
ozt
where
o 0 ; 0 j_an PR T & 9
bet o Mgy Ni= g O = 0 Il ey — [}

Now, we recall the notion of the Legendre transform defined as follows:

V) = {gvm )€ VTzﬂé Ve .M\ {0},

It can be verified that F(V) = F*(L(V)) for any V € TM, where F* is the
dual norm of Finsler structure F on the cotangent space T* M, defined
F*(z,)= sup &(V) forany £ € T*M.
F(z,V)<1
Let u : M — R be a smooth function on M, M, := {x € M|du(z) # 0}. The
gradient of u is
Vu(z) = L~ (du(z)) € T, M,
and the Hessian of u using Chern connection can be written as

Viu(X,Y) = gyu(DX"Vu,Y).

Let (M, F,du) be a Finsler measure space, and du = o(z)dx the volume form
on M. For any smooth vector field V' € T'M, the divergence of V is defined by

avi .0l
div(V) = £, (W 4V 3(;%0)

For any smooth function v on M, the Finsler Laplacian is as follows

0%u ou Ou Ologo

——— T (Vu) - L
Ozt Ox 5(Vu) 0ok 9w 0w )
Consider (M, F,du) as a Finsler measure space with boundary M, then we
shall view OM as a hypersurface embedded in M. Also M is a Finsler manifold
with a Finsler structure Fyps induced by F. For any x € OM, there is exactly

two unit normal vectors ﬁ), which are characterized by

Au = div(Vu) = g¥ (Vu) (

T(0M) = {V € TuMlg (7, V) = 0,95 (7, 7) = 1},
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In this paper, we choose the normal vector that points outward M. Note that,
if 7 be a normal vector, then - may not be a normal vector unless F' be
reversible. The normal vector 77 induces a volume form du- on OM from du
by

Vdp = g= (7, V)dus, YV € TM. (2.1)
In [8], it is shown that the Stokes theorem holds as follows

/ div(V)du = / g7 (7, V)dps.

M oM
Given two linearly independent vectors V, W € T,,M \ {0}, the flag curvature
is defined by
gv(RY(V, W)W, V)

gv(V.V)gv (W, W) — gy (V,W)?’

K(\V,W):=
where RV is the Chern curvature

RY(X,Y)Z =VYVyZ - VYV Z - Vi y 2.
Then the Ricci curvature of V for (M, F) is

n—1
Ric(V) =Y K(V,e),
i=1
Vv . .
here ey, -+ ,e,_1, W form an orthonormal basis of T, M with respect to gy,

namely, one has Ric(AV) = Ric(V) for any A > 0.
For a given volume form du = o(z)dz and a vector y € T, M\ {0}, the distortion
of (M, F,du) is defined by

det(g, )

7(V):=1n

Considering the rate of changes of the distortion along geodesics, leads to the
so-called S-curvature as follows
d .

S(V) = 2 [r(v(®), 7(®)]e=o,
where ~(t) is the geodesic with v(0) = z and 4(0) = V.
The weighted Ricci curvature on Finsler manifolds, which was introduced by
Ohta [9], motivated by the work of Lott-Villani in [3] and Sturm [12]. Tt is
defined as follows:

Definition 2.2. [9] Let (M, F,du) be a Finsler n-manifold with volume form
dp. Given a vector Ve T, M, let v : (—e,e) = M be a geodesic with v(0) = z,
4(0) = V. Define
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Then the weighted Ricci curvatures of M defined as follows

Rien(V) = {Ric(V)+S(V), for S(V) =0,

—00, otherwise,
. . . . S(V)?
Ricy(V) = Ric(V)+S(V) - NV VN € (n,0),
Ricss(V) := Ric(V)+S(V).

Lemma 2.3 ([13]). Let (M, F,du) be a Finsler measure space and v : M — R
be a smooth function on M. Then on M, = {x € M : Vu|, # 0}, we have

Au = Z?:luii - S(Vu),

where uy; = gvu(V3u(e;, e;)), {ei}, is the local orthonormal frame with re-
spect to gv., on M,.

We state Bochner-Weitzenbock formula from [10]:

Lemma 2.4. Let (M, F,du) be a Finsler measure space, and v : M — R a
smooth function on M. Then

NG (F (Z“)z) — D(Au)(Vu) = Ricoo (Vu) + [V2ulliggay,  (22)

as well as
(Au)?
N b

. (2.3)

for N € (n,00), point-wise on M,,.

AVH <F(Vu)2> — D(Au)(Vu) > Riey (Vu) +

3. Main Results

Theorem 3.1. Let (M™, F,du) be a complete Finsler manifold and Ricy sat-
isfy

2 2
Ricy (V) + \?’/ﬁv “(Vu“’w) >0, (3.1)

where u is the first Dirichlet eigenfunction on a bounded domain Q C M™
corresponding to A\1. Then, we obtain
V12
1 < L)\l.
3
Theorem 3.2. For a complete Finsler manifold (M, F, du) with
V2u(Vu, Vu)
U

where u is the first Dirichlet eigenfunction on B C M, corresponding to \i.
Then

A
Ricy (Vu) +2(c — 2)

>0, (3.2)

Iy < f(e)AL. (3-3)
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Here ¢ = 2.4 such that f(c) attains the minimum value
2 1/ (Be—4)+1 )2]
¢) = Rl (Rt N I

fle) 20_1[ 3( 2(3c—4)—1

Proving our main result, first we need to prove the following Lemma;:

Lemma 3.3. Let (M, F,dp) be a complete Finsler manifold. For any constant
c>2,if
Viu(Vu,V
Ricy (Vu) + 2(c — 2) L4V V) 5 (3.4
U
where u is a first Dirichlet eigenfunction on B C M corresponding to A\, then

o= D) - 2\ABe D<M <-4 2B (39)

(&

Proof. Due to the definition of the first Dirichlet eigenvalue, we know Au =

2c—1

—Aju on B such that u|gp = 0. Multiplying both sides to u , we derive

1
/ w2 F(Vu)?dy = )\1/ u*dp. (3.6)
B 2c—1 B

Let I. be the following function
_ Jpur Tt F(Vu)tdu

1, . 3.7
0 [pure2F(Vu)2dp (87)
Combining (3.5) with (3.6), we have
1 2e-4p(Vu)td
ai, = Jut TE VU (3.8)
2c—1 Jpuedp

On the other hand
A1 / u* 2 F(Vu)?du
B

= /uQC_?’F(Vu)Q(—Au)d,u
B

/B du(VV*(u* 3 F(Vu)?))dp

= (2¢-3) /B u? A F(Vu)rdp + /B w23 du(VV(F(Vu)?))dp. (3.9)
Now, by I., we can rewrite (3.9) as

)\1/Bu2c_2F(Vu)2du (3.10)

= (2c—3)1, /B T F(Vu)?dp + /B w23 du(VV(F (Vu)?))du,
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So
(20—3)IC/BU CTEF(Vu)dp (3.11)
- /B (v F (V) — 20 2du(V F(Va)?) (s~ F (V) dp.

Using Holder inequality, we obtain

(2¢ — 3)213( /B u2c_2F(Vu)2du>2

( /B (Aus F(Va) — 2 2du(VV“F(Vau))) (ue ™! F(W))dﬂf

< /B v F(Va) — 2ue~2du(V YV F(Vu))2dp /B W22 F(Vu)2dp. (3.12)
Thus
(2¢ — 3)%12 /B w2 F(Vu)?du
< /B (Mu L F (V) — 2u2du(VVYF(Vu)))?du
= N2 /B w2 F(Vu)?du + 4 /B u? ™ du(VVF(Vu)))2dp
—4)\; /B w3 F(Vu)du(VYF(Vu))dpu. (3.13)
and

—4)\ / w3 F(Vu)du(VVYF(Vu))du
B

1

= — A\ / Vu2e 2V F(Vu)?)du
C — 1 B

_ / F(Vu)2A 2 2)dy
C_]. B

~ o /B (26 — A F(Vu)* — M2 2F(Vu)2dp.  (3.14)
Substituting (3.14) in (3.13), we get
(2¢ — 3)%12 /B u?*2F(Vu)?du
< X /B W22 F(Vu)2dp + 2(2¢ — 3)\s /B W2 PV dp

+4 / w*(du(VVF(Vu)))%dp. (3.15)
B
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Using Bochner-Weitzenbock formula (2.3), we have

/ w* R (Vu)? | V2ul2dp
B

F(Vu)?

5 ) — Ricy (V) + AF(Vu)? | du

< /B u? R (Vu)? [AW(

- % / W T R(Vu)? AV (F(Vu) dp — / u* TP (Vu)*Riey (Vu)du
B B

+A1 /B u? A F(Vu)tdp. (3.16)
Where
%/Bu20—4F(Vu)2AV“(F(Vu))2du (3.17)
- —%/Buzc_4|(vv“F(Vu)2\2du

—(c—2) /B u?* P F(Vu)* (du(VVF(Vu)?))dp
Putting (3.17) into (3.16), gives
/13u2674F(Vu)2|V2u|2du
< - /B 2TV (Vu)? 2dy

C(e—2) /B W25 PV (du(V I F(Va)?))dp

- / uw** A F(Vu)?Ricy (Vu)dp + M\ / u* R (Vu)tdu
B B

-2 /B u?Hdu(VVF(Vu)))?du
—(c—2) /B u* TS F(Vu)? (du(VVF(Vu)?))du
- /B u** A F(Vu)?Ricy (Vu)du + M\ /B w? TR (Vu)tdp. (3.18)
Using (3.4) in (3.18), we obtain
/Bu%*‘*F(vu)ﬂv%Pd# < 72/3u2c*4(du(VV“F(Vu)))2du
+A1 /B w1 F(Vu)tdy, (3.19)

By Kato’s inequality it follows
F(Vu)?|VZu|* > F(Vu)?|VV'F(Vu)]? > (du(VVYF(Vu)))?,
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which gives
1
/ u?Hdu(VVF(Vu)))?dp < M / uw* R (Vu)tdp. (3.20)
B B

From (3.20), (3.15) changes as

(2¢ — 3)213/ w72 F(Vu)?du
B

< =N /B w2 F(Vu)?dp + 2(2¢ — 3)\ /B R (V) du
+§)\1/BUQC*4F(VU)4dp
= -2 /B w2 F(Vu)?du + (40—134>>\1 /B w1 F(Vu)tdu,(3.21)
consequently

14
AL — <4c - 3>IC>\1 + (2¢ - 3)*I* <0. (3.22)

Considering ¢ > 2, inequality (3.22) is solvable and answers satisfy in (3.5). O

4. Proof of the Main Results
Proof of Theorem 3.1. Let ¥ = u®, where

N
= — = O.
V0o £y los
Then from Rayleigh-Ritz inequality, for any ¢ > 2, we obtain

< fB A)*dp
= JpF(Ve)du

- / 2e=2(Au)? + 2(c — 1)u2e=3 F(Vu)Au
B

A

e — 122~ F(Vau)dy/ / W2 F(Vu)dp
B
< M+ (e—1)2L. (4.1)
By (3.5), we infer

Ay

A
>
et
_|_
—~
o
|
—_
S~—
~

A

B —

|
| — |
w| =
N
—
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'bw
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[\v]
| I
>
e
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—4)+1
Taking ¢ = u, and minimizing the function f(c) = &, (4.1)
3 2(3c—4)—-1
becomes
7+ 23
A < %[/\1_
Then, we get the proof. (Il

Proof of Theorem 3.2. For the first eigenvalue of Clamped plate problem,
we get

fB (AWZdu
[ ¥%du

= 02/ [u?72(Au)? + 2(c — VYu** 3 F(Vu)*Au
B

I <

—|—(c—1)2u2674F(VU)4]du//Bu2cdu

2(c—1 c—1)2
= A\ - (_1)A§+( _i)\lfc)

2¢ 2¢
c? 2 2
Applying (3.5) into (4.3), we have
2 _1)2
ro< o 1[1+ 7(C 21) ]A%

o —
2% — =) — =\/2(3c — 4
(e~ 1)~ 2 /2B~ )

— o, (1.4)

with

2 1/ (Be—4)+1 )2]
o(c) = 1+ ———= |.
(c) 26—1|: 3< 2(3c—4) -1
Minimizing this function based on the condition (3.4), completes the proof. [
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