
تعداد نشریات | 26 |
تعداد شمارهها | 404 |
تعداد مقالات | 3,552 |
تعداد مشاهده مقاله | 5,509,371 |
تعداد دریافت فایل اصل مقاله | 3,769,411 |
ارزیابی ظرفیت برد منابع آب تالاب انزلی با استفاده از روش وزندهی ترکیبی AHP-Entropy و مدل ابرپیشرو | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 15، دوره 5، شماره 2، 1404، صفحه 251-271 اصل مقاله (1.69 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2024.15960.1505 | ||
نویسندگان | ||
مائده کیوانفر1؛ سمیه جنت رستمی* 2؛ افشین اشرف زاده3 | ||
1دانشآموختة کارشناسی ارشد، گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
2استادیار، گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
3دانشیار، گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
برای توسعه پایدار اقتصاد اجتماعی، منابع آب نه تنها یک عامل محدودکننده مهم است، بلکه نقش "حامل" غیرقابل جایگزین را نیز ایفا میکند. با افزایش جمعیت و رشد اقتصادی، فشار بر منابع آب رو به افزایش است. در این مطالعه با توجه به اهمیت تالاب انزلی به عنوان یکی از اکوسیستمهای طبیعی که همراه با پیشرفت فرآیندهای شهرنشینی در حال نابودی است، ظرفیتبرد منابع آب تالاب انزلی یک دورهی 10 ساله در استان گیلان، منطقه فومنات مورد ارزیابی قرار میگیرد. از این رو، ابتدا سیستم منابع آبی منطقه مورد مطالعه با روش پویایی سیستم و با استفاده از نرم افزار VENSIM مدلسازی شد. سپس با توجه به نتایج مدلسازی، با هدف ارزیابی ظرفیتبرد تالاب انزلی، 8 شاخص ارزیابی با درنظر گرفتن 3 زیرسیستم منابع آب، اقتصاد و محیط زیست تعریف شد. بر اساس دادهها و اطلاعات 10 ساله (1400-1391) در دسترس، هر شاخص در 4 سطح I (قابل بارگیری)، سطح II (ضعیف)، سطح III (بحرانی) و سطح IV (فوق بحرانی) طبقهبندی شدند. سپس وزن هر شاخص با استفاده از روش ترکیبی AHP-Entropy برآورد شد و توسط مدل ابرپیشرو درجه عضویت هر شاخص در هر سطح ارزیابی برای دوره زمانی موردنظر تعیین شد. در نهایت ظرفیتبرد هرسال برای 8 شاخص در 4 سطح محاسبه و عوامل مانع هر سال تعیین شدند. نتایج ارزیابی نشان میدهد که ظرفیتبرد منابع آب تالاب انزلی بین سالهای 1391 تا 1400 روند کاهشی داشته و ظرفیت آن از درجه II (ضعیف) به IV (فوق بحرانی) تغییر یافته است. بالاترین ظرفیت مربوط به سال 1391 و پایینترین ظرفیت به سالهای 1393، 1394 و 1400 اختصاص دارد. بررسی عوامل مانع نشان داد که منابع آب سطحی و زیرزمینی تأثیر قابل توجهی بر ظرفیتبرد منابع آب تالاب دارند و چندین شاخص از زیر سیستم منابع آب به عنوان عوامل مانع اصلی در این زمینه شناسایی شدهاند. این عوامل محدودیتهایی را بر بهبود ظرفیت تالاب ایجاد میکنند و افزایش یا کاهش این منابع بهویژه تحت تأثیر شرایط محیطی و اقتصادی، بر وضعیت تالاب تأثیرگذار است. | ||
کلیدواژهها | ||
منابع آب؛ مدل ابری؛ پویایی سیستم؛ وزنهای ترکیبی؛ تالاب انزلی | ||
مراجع | ||
منابع اداره کل هواشناسی گیلان، (1396)،http://www.gilmet.ir استانداری گیلان، (1396)، http://www.gilan.ir اسلامی، زینب، جنترستمی، سمیه، اشرفزاده، افشین. (1398). کاربرد مدلسازی در مدیریت رابطه پیوندی آب، غذا و انرژی. آب و توسعه پایدار، 6 (2)، 8-1. doi:10.22067/jwsd. v6i2.74126. ایوبیکیا، رضا، جنترستمی، سمیه، اشرفزاده، افشین، شفیعی ثابت، بهنام (1397). بهینه سازی تخصیص منطقه ای منابع آب در حوضه آبریز سفیدرود با رویکرد عدالت اجتماعی. تحقیقات منابع آب ایران، 14(5)، 252-236. زبردست، لعبت، و جعفری، حمیدرضا (1390). ارزیابی روند تغییرات تالاب انزلی با استفاده از سـنجش از دور و ارائة راهحل مدیریتی، محیط شناسی، 37(57)، 57-64. dor: 20.1001.1.10258620.1390.37.57.7.5 آوریده، حمیدرضا، صفری، عبدالرضا، همایونی، سعید، و خزایی، صفا (1393). برآورد عمق آبهای ساحلی به کمک تصاویر سنجش از دور فراطیفی، مهندسی نقشهبرداری و اطلاعات مکانی، 6(1)، 11-1.10.magiran.com/p1364335. کیوانفر، مائده، جنترستمی، سمیه، و اشرفزاده، افشین (1404). مدلسازی جامع ظرفیت برد منابع آب تالاب انزلی با استفاده از روش وزندهی ترکیبی AHP-Entropy- CRITIC و مدل TOPSIS-GRA. تحقیقات آب و خاک ایران. 56(1)، 105-126. doi:10.22059/ijswr.2024.384228.669817. مدبری، هادی، و شکوهی لنگرودی، علیرضا (1399). تعیین نیاز آبی تالاب انزلی بر اساس شاخصهای اکولوژیکی-گردشگری در چارچوب IWRM، تحقیقات آب و خاک ایران. 51(10)، 2517-2501.doi:10.22059/ijswr.2020.303554.668633
References Ayoubikia, R., Janatrostami, S., Ashrafzadeh, A., & Shafiei-Sabet, B. (2018). Optimization of regional water resources allocation in sefidroud river basin by social equity approach. Iranian Water Resources Research. 14(5), 236-252. [In Persian]. Avarideh, H. R., Safari, A. R., Homayouni, S., & Khazaei, S. (2015). Nearshore bathymetry using hyperspectral remotesensing. Geospatial Engineering, 6(1), 1-10. [In Persian]. doi: 10.magiran.com/p1364335. Cui, Y., Feng, P., Jin, J., & Liu, L. (2018). Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method. Entropy. 20 (5), 359. doi:10.3390/e20050359. Deng, L., Yin, J., Tian, J., Li, Q., & Gua, S. (2021). Comprehensive evaluation of water resources carrying capacity in the Han River Basin. Water 13 (3), 249. doi:10.3390/w13030249 Duan, Q.C., Liu, C.M., Chen, X.N., Liu, W.H., & Zheng, H.X. )2010(. Preliminary research on regional water resources carrying capacity conception and method. Acta Geographica Sinica. 65, 82–90. doi:10.11821/xb201001009. Fu, J., Zang, C., & Zhang, J. )2020(. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe River basin in China. Journal of Cleaner Production. 270, 122271. doi:10.1016/j. jclepro.2020.122271. Fu, Q., Meng, F.X., Li, T.X., Liu, D., Gong, F.L., Osman, A., & Li, Y.T. )2016(. Cloud modelbased analysis of regional sustainable water resource utilization schemes. International Journal of Agricaltural and Biological Engineering. 9, 67–75. doi:10.3965/j.ijabe.20160905.2529. Eslami, Z., Janatrostami, S., Ashrafzadeh, A. (2019). Application of Modeling in Management of Water, Food and Energy Nexus. Journal of Water and Sustainable Development. 6(2), 1-8. [In Persian]. doi:10.22067/jwsd. v6i2.74126. Gerlak, A.K., House-Peters, L., Varady, R.G., Albrecht, T., Zuniga-Teran, A., de Grenade, R.R., Cook, C., & Scott, C.A. (2018). Water security: A review of place-based research. Environmental Science & Policy 82, 79–89. doi: 10.1016/j.envsci. 2018.01.009. He, L.i., Du, Y.u., Wu, S., & Zhang, Z. )2021(. Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure. Agricultural Water Management 243, 106456. doi: 10.1016/j.agwat.2020.106456. Ji, J., Qu, X., Zhang, Q., & Tao, J. )2022(. Predictive analysis of water resource carrying capacity based on system dynamics and improved fuzzy comprehensive evaluation method in Henan Province. Environmental Monitoring and Assessment. 194 (7), 500. doi:10.1007/s10661-022-10131-7. Keyvanfar, M., Janatrostami, S., & Ashrafzadeh, A. (2025). A Comprehensive Assessment of Water Resources Carrying Capacity in Anzali Wetland Using AHP-Entropy-CRITIC Combined Weighting Method and TOPSIS-GRA Model. Iranian Journal of Soil and Water Research. 56(1), 105-126. [In Persian]. doi:10.22059/ijswr.2024.384228.669817. Kummu, M., Guillaume, J.H.A., de Moel, H., Eisner, S., Floerke, M., Porkka, M., Siebert, S., Veldkamp, T.I.E., & Ward, P.J. )2016(. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific Reports. UK 6, 38495. doi:10.1038/srep38495.Li, D., Liu, C., Du, Y., & Han, X. )2004(. Artificial intelligence with uncertainty. Journal of Software. (11), 1583-1594. doi:10.1201/9781315366951. Li, M., Zheng, T.Y., Zhang, J., Fang, Y.H., Liu, J., Zheng, X.L., & Peng, H. )2019(. A new risk assessment system based on set pair analysis - variable fuzzy sets for underground reservoirs. Water Resources Management. 33, 4997–5014. doi:10.1007/s11269-019-02390-w. Li, Y., & Chen, Y. )2021(. Variable precondition S-type cloud algorithm: Theory and application on water resources carrying capacity assessment. Ecological indicators. 121, 107209 doi: 10.1016/j.ecolind. 2020.107209. Liu, Y., Gao, C., Ji, X., Zhang, Z., Zhang, Y., Liu, C., & Wang, Z. (2022). Simulation of water resources carrying capacity of the Hangbu River Basin based on system dynamics model and TOPSIS method. Front. Journal of Environmental Sciences. 2022, 10, 1045907. doi:10.3389/fenvs.2022.1045907. Lu, L., Lei, Y., Wu, T., & Chen, K. )2022(. Evaluating water resources carrying capacity: the empirical analysis of Hubei Province,
China 2008–2020[J]. Ecological indicators. 144, 109454 doi: 10.1016/j.ecolind.2022.109454. Makropoulos, C., Natsis, K., Liu, S., Mittas, K., & Butler, D. (2008). Decision support for sustainable option selection in integrated urban water management. Environmental Modelling & Software. 12 (23), 1448–1460. doi: 10.1016/j.envsoft.2008.04.010 Modaberi, H., Shokoohi, A, (2019). Determining Water requirement of Anzali Wetland based on Eco-Tourism Indices within the Framework of IWRM. Soil And Water Research. [In Persian]. doi:10.22059/ijswr.2020.303554.668633 Mou, S., Yan, J., Sha, J., Deng, S., Gao, Z., Ke, W., & Li, S. (2020). A comprehensive evaluation model of regional water resource carrying capacity: model development and a case study in Baoding. China. Water-Sui. 12 (9), 2637. doi:10.3390/w12092637. Murgatroyd, A., & Hall, J.W. (2021). Selecting indicators and optimizing decision rules for long-term water resources planning. Water Resources Research. 57(5), e2020WR02811. doi:10.1029/2020WR028117. Peng, T., & Deng, H. (2020). Comprehensive evaluation on water resource carrying capacity in karst areas using cloud model with combination weighting method: a case study of Guiyang, southwest China. Environmental Science and Pollution Research. 27 (29), 37057–37073. doi:10.1007/s11356-020-09499-1. Peng, T., Deng, H., Lin, Y., & Jin, Z. (2021). Assessment on water resources carrying capacity in karst areas by using an innovative DPESBRM concept model and cloud model. Science of The Total Environment.767, 144353. doi: 10.1016/j.scitotenv.2020.144353. Sachs, J.D. (2012). From Millennium Development Goals to Sustainable Development Goals. The Lancet 379 (9832), 2206–2211. doi:10.1016/S0140-6736(12)60685-0. Wang, G., Xiao, C., Qi, Z., Meng, F., & Liang, X. (2021). Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecological Indicators. 122, 107232 doi: 10.1016/j.ecolind.2020.107232. Wang, X., Liu, L., Zhang, S., & Gao, C. (2022). Dynamic simulation and comprehensive evaluation of the water resources carrying capacity in Guangzhou city. China. Ecological Indicators. 135, 108528 doi: 10.1016/j.ecolind.2021.108528. Wang, X.T., Yang, W.M., Xu, Z.H., Hu, J., Xue, Y.G., & Lin, P. (2019). A normal cloud modelbased method for water quality assessment of springs and its application in Jinan. Sustainability 11, 16. doi:10.3390/su11082248. Wang., Hou, Y., & Xue, Y. (2017). Water resources carrying capacity of wetlands in Beijing: analysis of policy optimization for urban wetland water resources management. Journal of Cleaner Production. 161, 1180–1191. doi; 10.1016/j.jclepro.2017.03.204. Wei, X., Wang, J., Wu, S., Xin, X., Wang, Z., & Liu, W. (2019). Comprehensive evaluation model for water environment carrying capacity based on VPOSRM framework: A case study in Wuhan. China. Sustainable Cities and Society. 50, 101640 doi:10.1016/j.scs.2019.101640. Wu, C., Zhou, L., Jin, J., Ning, S., Zhang, Z., & Bai, L. (2019). Regional water resource carrying capacity evaluation based on multi-dimensional precondition cloud and risk matrix coupling model Science of the Total Environment. 710, 136324. doi: 10.1016/j.scitotenv.2019.136324 Wu, C., Zhou, L., Jin, J., Ning, S., Zhang, Z., & Bai, L. (2020). Regional water resource carrying capacity evaluation based on multi-dimensional precondition cloud and risk matrix coupling model. Science of the Total Environment. 710, 136324 doi:10.1016/j. scitotenv.2019.136324. Wu, L., Su, X.L., Ma, X.Y., Kang, Y., & Jiang, Y.A. (2018). Integrated modeling framework for evaluating and predicting the water resources carrying capacity in a continental river basin of northwest china. Journal of Cleaner Production. 204, 366–379. doi: 10.1016/j.jclepro.2018.08.319 Xing, L., Xue, M., & Hu, M. (2019). Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: case of Wuhan City in China[J]. Journal of Environmental Management. 230, 474–487. doi: 10.1016/j.jenvman.2018.09.065. Xu, Y., Ma, L., & Khan, N.M. (2020). Prediction and Maintenance of Water Resources Carrying Capacity in Mining Area-A Case Study in the Yu-Shen Mining Area. Sustainability 12 (18), 7782. doi:10.3390/su12187782. Yang, G., Dong, Z., Feng, S., Li, B., Sun, Y., & Chen, M. (2021). Early warning of water resource carrying status in Nanjing City based on coordinated development index. Journal of Cleaner Production. 284, 124696 doi: 10.1016/j.jclepro.2020.124696. Yang, Z., Song, J., Cheng, D., Xia, J., Li, Q., & Ahamad, M.I. (2019). Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. Journal of Environmental management. 230, 221–233. doi:10.1016/j.jenvman.2018.09.085. Yu, C., Li, Z., Yang, Z., Chen, X., & Su, M. (2020). A feedforward neural network based on normalization and error correction for predicting water resources carrying capacity of a city. Ecological Indicators. 118, 106724. doi: 10.1016/j.ecolind.2020.106724. Zebardast, L., & Jafari, H. (2011). Use of remote sensing in monitoring the trend of changes of Anzali Wetland in Iran and proposing environmental management solution. Journal of Environmental Studies, 37(57), 1-8. [In Persian]. dor: 20.1001.1.10258620.1390.37.57.7.5 Zhang, B., Chen, Z.M., Zeng, L., Qiao, H., & Chen, B. (2016). Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis. Frontiers of Earth Science. 10, 13–28. doi:10.1007/s11707-015-0505-8. Zhang, J., Zhang, C., Shi, W., & Fu, Y. (2019). Quantitative evaluation and optimized utilization of water resources-water environment carrying capacity based on naturebased solutions. Journal of Hydrology. 568, 96–107. doi: 10.1016/j.jhydrol.2018.10.059 Zhang, J.D., Fu, J.T., Liu, C.Y., Qu, Z.G., Li, Y.A., Li, F., Yang, Z.F., & Jiang, L.P. (2019). Evaluating water resource assets based on fuzzy comprehensive evaluation model: A case study of Wuhan city, china. Sustainability 11, 16. doi:10.3390/su11174627. Zhang, S.H., Xiang, M.S., Xu, Z., Wang, L., & Zhang, C. (2020). Evaluation of water cycle health status based on a cloud model. Journal of Cleaner Production. 245,15. doi:10.1016/j.jclepro.2019.118850. Zhao, J.; Jin, J.; Zhu, J.; Xu, J.; Hang, Q.; Chen, Y., & Han, D. (2016). Water resources risk assessment model based on the subjective and objective combination weighting methods. Water Resour. Managment. 2016, 30, 3027–3042. doi:10.1007/s11269-016-1328-4 Zhao, Y., Wang, Y., & Wang, Y. (2021). Comprehensive evaluation and influencing factors of urban agglomeration water resources carrying capacity. Journal of Cleaner Production 288, 125097. doi: 10.1016/j.jclepro.2020.125097. Zheng, D., Lin, Z., & Wu, F. (2020). Measurement method of regional water resources carrying capacity based on ecological footprint. Desalination and Water Treatment. 187, 114–122. doi:10.5004/dwt.2020.25308. Zuo, Q., Guo, J., Ma, J., Cui, G., Yang, R., & Yu, L. (2021). Assessment of regional-scale water resources carrying capacity based on fuzzy multiple attribute decision-making and scenario simulation. Ecological Indicators. 130, 108034 doi:10.1016/j. ecolind.2021.108034. Zuo, Q., Zhang, Z., & Wu, B. (2020). Evaluation of water resources carrying capacity of nine provinces in Yellow River basin based on combined weight TOPSIS model. Water Resour Prod. 36 (02), 1–7. doi:10.3390/w15244229 Zyoud, S.H., Kaufmann, L.G., Shaheen, H., Samhan, S., & Fuchs-Hanusch, D. (2016). A framework for water loss management in developing countries under fuzzy environment: integration of fuzzy AHP with fuzzy TOPSIS[J]. Expert Systems with Applications. 61, 86–105. doi: 10.1016/j.eswa.2016.05.016 | ||
آمار تعداد مشاهده مقاله: 294 تعداد دریافت فایل اصل مقاله: 32 |