
تعداد نشریات | 26 |
تعداد شمارهها | 404 |
تعداد مقالات | 3,552 |
تعداد مشاهده مقاله | 5,509,378 |
تعداد دریافت فایل اصل مقاله | 3,769,411 |
پیشنگری میدان باد در آینده بر اساس مدلهای اقلیمی CMIP5 و CMIP6 در استان سیستان و بلوچستان | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 13، دوره 5، شماره 2، 1404، صفحه 219-233 اصل مقاله (1.31 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2024.15772.1493 | ||
نویسندگان | ||
فاطمه رجایی* 1؛ ابراهیم احمدی شرف2 | ||
1استادیار، گروه علوم محیطزیست، دانشکدة علوم، دانشگاه زنجان، زنجان، ایران | ||
2پسا دکتری، گروه مهندسی عمران و محیطزیست، دانشگاه A&M فلوریدا، فلوریدا، ایالات متحده امریکا | ||
چکیده | ||
بین تمام منابع انرژی تجدیدپذیر مورد استفاده برای تولید برق، انرژی باد یکی از پیشگامان از نظر ظرفیت تولید و سرعت رشد تکنولوژی است. بنابراین تخمین چگونگی تغییرات منابع انرژی بادی تحت گرمایش جهانی آینده ضروری است. اهداف این مطالعه ارزیابی عملکرد مدل های CMIP5 و CMIP6 در دوره تاریخی و نیز شبیهسازی تغییرات آینده سرعت باد (2014-2100) در شش ایستگاه همدیدی استان سیستان و بلوچستان است. همچنین تمرکز بر روی تفاوتهای پیشنگریهای مدلهای CMIP5 و CMIP6 خواهد بود. ارزیابی عملکرد نسل جدید مدلهای اقلیمی CMIP6 و CMIP5 برای پیشنگری سرعت باد برای دوره تاریخی، نسبت به دادههای مشاهداتی با توجه به معیارهای آماری ارزیابی گردید. از بسته CDFT در نرم افزارRStudio برای ریزمقیاسنمایی آماری و تصحیح اریب خروجی مدلها استفاده گردید. نتایج نشان داد اکثر مدلهای CMIPs، تغییرپذیری سرعت باد را خوبی شبیهسازی کردند. شبیهسازی مدلهای CanESM5 در CMIP6 نسبت به CMIP5 بهبود یافته است و نتایج بهتری نسبت به دادههای مشاهداتی پیشنگری نموده است، اما پیشنگری مدلهای CMCC-ESM2 و CNRM-CM6-1در CMIP6 در مقایسه با CMIP5 کارایی کمتری را در شبیهسازی نشان داد. پیشنگری سالانه سرعت باد (میانگین ایستگاههای مورد بررسی) در دوره آینده توسط CMIP6 و CMIP5 به ترتیب افزایش و کاهش را نشان میدهد. روند سرعت باد در دوره آینده توسط CMIP6 و CMIP5 به ترتیب افزایش و کاهش در پیشنگری های سالانه را نشان میدهد. در هر دو گروه از مدلها بیشترین سرعت باد در تابستان و سپس بهار و کمترین سرعت باد در پاییز مشاهده گردید. در CMIP5 همه ایستگاهها کاهش سرعت باد و در CMIP6 (جز در ایستگاه چابهار) افزایش سرعت باد مشاهده گردید. در میان ایستگاههای مورد مطالعه، چابهار دارای بیشترین میانگین سرعت باد میباشد و سایر ایستگاهها تفاوت قابل ملاحظهای مشاهده نگردید. | ||
کلیدواژهها | ||
کلمات کلیدی: ریزمقیاس نمایی؛ سرعت باد؛ سیستان وبلوچستان؛ مدل های CMIP | ||
مراجع | ||
منابع خواجهامیری، چکاوک، خسروی، محمود، طاوسی، تقی، حمیدیانپور، محسن، و کیانیمقدم، منصور (1401). صحتسنجی عملکرد برونداد مدل اقلیمی CMIP6 با دادههای مشاهداتی کرانههای مکران. هواشناسی و علوم جو، 5 (1)، 22-41. doi:10.22034/jmas.2023.379448.1193 روشن، غلامرضا، قنقرمه، عبدالعظیم، و شاهکوئی، اسماعیل (1393). ارزیابی پتانسیل تولید انرژی بادی در ایستگاههای منتخب ایران. برنامهریزی منطقهای، 4 (14)، 13-30. کهخامقدم، پریسا، و دلبری، معصومه (1396). ارزیابی امکان بهرهگیری از انرژی باد در استان سیستان و بلوچستان. پژوهشهای جغرافیای طبیعی، 49 (3)، 441-455. فرزانه، مهسا، ملبوسی، شراره، و حمیدیانپور، محسن (1401). پیشنگری متغییرهای اقلیمی استان سیستان و بلوچستان تحت سناریوهای واداشت تابشی RCP. پژوهشهای اقلیم شناسی، 13 (51)، 129-148. doi: 10.30495/sarzamin.2023.22861
References Alizadeh Choobari, O., Zawar-Reza, P., Sturman, A., (2013). Low level jet intensification by mineral dust aerosols. Ann. Geophys. 31, 625–632. doi:10.5194/angeo-31-625-2013. Alizadeh-Choobari, O., Zawar-Reza, P., & Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric Research, 143, 328-341. doi: 10.1016/j.atmosres.2014.02.004. Carta, JA., Ramirez, P., & Velazquez, S. (2009). Are view of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands. Renew Sustain Energy Rev, 13, 933–55. doi: 10.1016/j.rser.2008.05.005 Carvalho A., Rocha X., Costoya M., deCastro M (2021). Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6 D. Renewable and Sustainable Energy Reviews 151:111594. Carvalho, A., Rocha, X., Costoya, M., & deCastro, M. G. (2021). Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renewable and Sustainable Energy Reviews, 151, 111594. doi: 10.1016/j.rser.2021.111594 Carvalho, D. C., Rocha A., Gomez-Gesteira, M., & Silva Santos, C. (2017). Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew Energy, 101, 29–40 .doi: 10.1016/j.renene.2016.08.036 Chaturvedi, R. K. J., Joshi, M., Jayaraman, G., Bala, & Ravindranath, N. H. (2012). Multi-Model Climate Change Projections for India under. Representative Concentration Pathways, Current Science, 103, 791-802. doi: 10.1016/j.agwat.2024.108673. Chen, HP., & Sun, JQ. (2015). Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Climatic Change, 129(1-2), 197–211. doi:10.1029/2005JD006290 Chen, L. (2020). Impacts of climate change on wind resources over North America based on NA-CORDEX. Renew Energy, 135, 1428 – 38. doi: 10.1016/j.renene.2020.02.090 Christopher, J., Schindler, D. (2019). Climate Changing wind speed distributions under future global Energy. Conversion and Management, 198, 111841. doi: 10.1016/j.enconman.2019.111841. Costoya, X., deCastro, M., & Carvalho, D. G ´. (2020). On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl Energy, 262, 114537. doi: 10.1016/j.apenergy.2020.114537. Eyring, V., Bony, S., & Meehl, G. A. (2016). Overview of the Coupled Model Intercomparison Project Phase6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–58. doi:10.5194/gmd-9-1937-2016. Fadaei, D., (2007): The feasibility of manufacturing wind turbines in Iran, Renewable and Sustainable Energy Reviews, Vol.11, PP.536–542. doi: 10.1016/j.rser.2005.01.012. Farzaneh M., Malbosi Sh., Hamidian Poor M (2022). Prediction of climate variable in Sistan and Baluchestan province under RCPs senarios. Climatology Research. 13 (51): 129-148. doi: 10.30495/sarzamin.2023.22861 [In Persian] Gao, J., Sheshukov, A.Y., Yen, H., Douglas-Mankin, K.R., White, M.J., & Arnold, J.G. (2019). Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology . 568, 551–561. doi: 10.1016/j.jhydrol.2018.10.041 Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A.J., Bador, M., Boschat, G., Chung, C., Kajtar, J.B., Rauniyar, S., Freund, M.B., Lyu, K., Rashid, H., Zhang, X., Wales, S., Trenham, C., Holbrook, N.J., Cowan, T., Alexander, L., Arblaster, J. M., & Power, S. )2020(. Insights from CMIP6 for Australia’ s Future climate. Earth’ s Fut, 8. doi:10.1029/2019EF001469. Gusaina, S., & Ghoshb, S. (2020). Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Karmakar Atmospheric Research, 232, 104680. Hamed, M. M., Nashwan, M. S., & Shahid, S. b. (2021). Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Climatol. 41, 5431–5446. doi: 10.1002/joc.7286 Hamed, M., Salem Nashwan, M., & Shahid, Sh. (2022). In consistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Tarmizi Atmospheric Research, 265, 105927. doi: 10.1016/j.atmosres.2021.105927 Hung, M. J. L., Lin, W., Wang, D., Kim, T., Shinoda, & Weaver. S. (2013). MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models. Journal of Climate, 26, 6185-6214. doi:10.1175/JCLI-D-12-00541.1 Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G.F., Chung, E.-S., & Wang, X. (2021). Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos Res, 254, 639-105525. doi: 10.1016/j.atmosres.2021.105525 Jung, C., & Schindler, D. (2018). 3D statistical mapping of Germany’s wind resource using WSWS. Energy Convers Manage, 159, 96–108. doi:10.1016/j.enconman.2017.12.095 Kamranzad, B. (2019). Nobuhito Mori Future wind and wave climate projections in the Indian Ocean based on a super high‑resolution MRI‑AGCM3.2S model projection. Climate Dynamics, 53:2391–2410. doi:10.1007/s00382-019-04861-7. Kamranzad, B., & Mori, N. (2019). Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection. Clim Dyn, 53(3–4), 2391–2410. doi:10.1007/s00382-019-04861-7. Khaje Amiri Khaledi, Ch; Khosravi, M.; Taosi, T. (2022). Validation of CMIP6 climate model output performance with observational data of Makran coast. Meteorology and Atmospheric Sciences, 5 (1)1, 22-41. doi: 10.22034/jmas.2023.379448.1193 [In Persian] Krishnan, A., & Bhaskaran, P. (2020). Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Climate Dynamics, 55, 2667–2687. doi: 10.1007/s00382-020-05406-. Kulkarni, S., & Huang, H. P. (2014). Changes in surface wind speed over North America from CMIP5 model projections and implications for wind energy. Adv Meteorol, 292763. doi: 10.1155/2014/292768 Lima, DCA., Soares, PMM., Cardoso, RM., Semedo, A., Cabos, W., & Sein, DV. (2021). The present and future offshore wind resource in the Southwestern African region. Clim Dynam, 56, 1371 – 88. doi: 10.1175/2010BAMS2946.1 Lun, Y., Liu, L., Cheng, L., Li. X., Li. H., & Xu. Z. (2021). Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. nternational Journal of Climatology, 41, 3994 – 4018. doi: 10.1002/joc.7055. Martinez, G., & Iglesias, A. (2021). Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Conversion and Management, 234, 11396. doi: 10.1016/j.enconman.2021.113961. Moghadam, P., Delbari, M. (2016). Evaluating the possibility of using wind energy in Sistan and Baluchestan province. Natural Geography Research, 49 (3), 441-455. [In Persian] Monerie, P.A., Sanchez-Gomez, E., Pohl, B., Robson, J., Dong, B., 2017. Impact of internal variability on projections of Sahel precipitation change. Environ. Res. Lett. 12 114003. doi: 10.1016/j.ifacol.2017.07.155. Monerie, P.A., Wainwright, C.M., Sidibe, M., Akinsanola, A.A., 2020. Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Clim. Dyn. 55 (5-6), 1385-1401. doi: 10.1016/j.agwat.2020.108673. Muthige, M. S. (2018). Projected changes in tropical cyclones over the South West Indian Ocean under different extents of global warming Environ. Re, Lett. 13 065019. doi: 10.1088/1748-9326/aabc60. O’Neill, BC., Tebaldi, C., van, Vuuren D. P., et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–82. doi: 10.5194/gmd-9-3461-2016. Ouarda TBMJ, Charron C, Shin J-Y, Marpu PR, Al-Mandoos AH, Al-Tamimi MH, et al. (2020). Probability distributions of wind speed in the UAE. Energy Convers Manage.93:414–34. doi: 10.1016/j.wace.2020.100303 Pryor, S. C., & Barthelmie, R. J. (2010). Climate change impacts on wind energy: a review. Renew Sustain Energy Re, 14(1), 430 – 7. doi: 10.1016/j.rser.2009.07.028 Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E., (2009 b). AquaCrop the FAO crop model to simulate yield response to water: II: main algorithms and software description. Agronomy Journal, 101, 438–447. doi: 10.2134/agronj2008.0140s. Reyers, M., Moemken, J., & Pinto, J. G. (2016). Future changes of wind energy potentials over Europe in a large CMIP5 multi model ensemble. nternational Journal of Climatology, 36(2),783 – 96. doi: 10.1002/joc.4382. Roshan Gh.R., Qanqormeh, Gh., & Shahkoui, A. (2014). Evaluation of wind energy production potential in selected stations of Iran. Regional Planning, 4 (14), 13-30. [In Persian] Sansom, P.G., Stephenson, D.B., Ferro, C.A., Zappa, G., & Shaffrey, L. (2013). Simple uncertainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate change experiments. J. Clim. 26 (12), 4017–4037. doi: 10.1175/JCLI-D-12-00462.1 Soares, PM., Lima, D., Semedo, A., Cabos, W., & Sein, D. V. (2019). Climate change impact on Northwestern African offshore wind energy resources. Environ Res Lett, 14, 124065. doi: 10.1088/1748-9326/ab5731 Song, Y.H., Chung, E.-S., & Shahid, S. a. (2021). Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. nternational Journal of Climatology. 41, 13, 5899-5919. doi: 10.1002/joc.7159 Taylor KE. (2012). Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos; 106:7183–92. doi: 10.1007/978-3-030-29639-1_2. Vara Prasad, P., Allen Jr, L., & Boote, K. (2005). Crop responses to elevated carbon dioxide and interaction with temperature: grain legumesJournal of Crop Improvement, 13, 113–155. doi: 10.1016/j.atmosres.2019.104680 Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv. Model Earth Syst, 11, 2177–2213. doi: 10.1029/2019ms001683. Weigel, A.P., Knutti, R., Liniger, M. A., & Appenzeller, C. (2010). Risks of model weighting in multimodel climate projections. J. Clim. 23, 4175–4191. doi: 10.1175/ 2010JCLI3594.1. Yanlin Yue, a., Dan Yan, b. c., Qun Yue, a., Guangxing Ji, d., & Zheng Wang, a, e. (2021). Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric Research, 264, 105828. doi: 10.1016/j.atmosres.2021.105828.
| ||
آمار تعداد مشاهده مقاله: 202 تعداد دریافت فایل اصل مقاله: 21 |